
Applications of Geometric Algebra in
Mathematical Engineering

Hugo Hadfield

Supervisor: Prof. Joan Lasenby

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Queens’ College August 2023

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Hugo Hadfield
August 2023

Acknowledgements

I would like to start by thanking my supervisor, Joan Lasenby. Joan has dedicated huge
amounts of her time to my PhD project, proofreading reams and reams of partially thought
out ideas, encouraging me to explore new areas of research, and on occasion even coaching
me and the SigProc PhD students in circuit training on the Trinity sports pitches. Thank you
Joan for all of your help, support and kindness over the years, it really means a lot to me and
to all your students.

I would like to thank all of my colleagues in the SigProc Lab and CUED for their
friendship. You have all contributed hugely to making my PhD enjoyable and enriching. In
particular I would like to thank Fergal Cotter, Jos Van de Westhuizen and Oliver Bonner
for being so welcoming when we first joined and to Sam Duffield, Jacob Vorstrup and Alex
Grafton for pushing me to improve my times on both 5K runs and the Guardian Quick
crossword. Thank you to Eric Wieser for his dry wit and seemly unlimited patience when
reviewing my code.

I would also like to thank my various housemates over the years, Ben Young for his
patience, excellent cooking and stunning musical performances at Queens’ MCR pub quizes,
Jonny Morris and Beamish for taking active interests in my collection of pot plants and
quilted blankets respectively, and Aoife Hannon for being the very much needed voice of
reason in the house. Thank you to Jack Wilde for his impromptu musical performances and
teaching me how to handle a soupy puck. I would also like to give special thanks to Tatsiana
Ivonchyk, Sam Snyder and Papaya for welcoming me into their home, treating me with
kindness, feeding me, encouraging me to finish my thesis and get a job, and allowing me to
erect a 2500 litre paddling pool in their garden during the summer months. Thank you to
Yasunori Watanabe and Anna Lamstaes for providing expert advice on both thesis writing
and red wine pairings, and always being keen to barbecue on any remotely sunny day.

Thank you also to my friends from Queens’. Thank you to Luz Alonso for companionship,
for taking me on adventures both around the UK and overseas, and for always laughing
along with me through my attempts to learn Spanish. Thank you to Margherita Protasoni for
her kindness, support and calm competence in the face of chaos. To all the members of the
Queens’ College Contract Whist Society I hope to see you at the Chandos one day soon.

vi

I would like to thank the friends I have made since moving to London without whose
encouragement this thesis would never have been submitted. Thank you to Ana Pervan for
being the ideal desk mate, quiz team member and supportive friend. Thank you to Edgar
Tamayo-Cascan and James Chappell for being my companions in exploring local maritime
history, in particular the battleships of London. Thank you to Sofía Dudas for ensuring the
9-5 was never dull.

Finally I would also like to thank the Staff of Hot Numbers for making the highest quality
sausage rolls available in Cambridge, your dedication to your craft is astounding and it is
not exaggeration to say that much of this thesis would not have been possible without your
indirect support. I feel blessed to have lived through an era when both kimchi eggs and
strawberry Rocko Mountain beans were on the menu.

Abstract

Geometric Algebra (GA) has found success in various areas of the physical sciences and
engineering over the last decade but remains relatively underutilised in industry and several
key topics in the field remain unexplored. This thesis focuses on the practical applications of
Geometric Algebra in various interconnected areas of mathematical engineering. In Part I
we explore the properties of the objects resulting from the addition of blades in Conformal
Geometric Algebra (CGA) and how we might use these objects in computer graphics and
robotics algorithms. In Part II we explore how Screw Theory embeds into CGA, how to
use this embedding for simulation of the dynamics of rigid bodies, and how practitioners
can leverage the geometric primitives built into CGA to represent and solve constraints in
multi-body robotic systems.

Table of contents

1 Introduction and Background 1
1.1 Introduction . 1
1.2 Basics of GA . 2

1.2.1 Defining a Specific Subalgebra . 3
1.2.2 The Products of GA . 3
1.2.3 Reciprocal and Pseudo-reciprocal Frames 5
1.2.4 Linear Multivector Mappings . 5
1.2.5 Multivector Reverse and Multivector Inverses 5
1.2.6 Rotors . 6

1.3 3D CGA . 6
1.3.1 Homogeneous Point Embedding 6
1.3.2 Geometric Primitives . 7
1.3.3 Intersections . 8
1.3.4 Transformations . 8
1.3.5 Duality . 8

1.4 3D PGA . 9
1.4.1 Homogeneous Point Embedding 9
1.4.2 Geometric Primitives . 9
1.4.3 Intersections . 9
1.4.4 Transformations . 9
1.4.5 Duality . 10

1.5 Other GA Frameworks . 10

I Computer Graphics, Computer Vision and Visualisation 11

2 Calculating the rotor between conformal objects 13
2.1 Introduction . 13

x Table of contents

2.2 Related Work . 14
2.3 Conformal Geometric Algebra . 14
2.4 A Rotor between Objects . 14

2.4.1 Lines . 18
2.4.2 Planes . 18
2.4.3 Circles . 19
2.4.4 Spheres . 19
2.4.5 Point Pairs . 20
2.4.6 Lines to Circles: Planes to Spheres 20

2.5 The Non-Uniqueness of the Recovered Rotors 20
2.6 Conclusion . 21

3 Direct linear interpolation of geometric objects in conformal geometric algebra 23
3.1 Introduction . 23
3.2 Motivation . 24
3.3 Linearly interpolating conformal points 24
3.4 Linearly interpolating higher grade conformal objects 25
3.5 Creating a blade from a pure grade multivector 26
3.6 Techniques for understanding interpolant properties 28
3.7 Point pairs . 28
3.8 Circles . 32
3.9 Lines . 35

3.9.1 Screw Theory . 35
3.9.2 Bivector representation of a line 37
3.9.3 The bivector representation of a screw 38
3.9.4 Adding dual lines . 39
3.9.5 Relationship to object manifold reprojection 40

3.10 Planes . 41
3.11 Spheres . 42
3.12 Applications . 46

3.12.1 Higher order spline interpolation through objects 46
3.12.2 Recursive scene simplification by averaging conformal objects . . . 46
3.12.3 k-means clustering of conformal objects 49
3.12.4 Closest point to two non intersecting lines (least squares sense) . . . 50

3.13 Conclusions . 52

Table of contents xi

4 Exploring Novel Surface Representations 53
4.1 Introduction . 54
4.2 Conformal Geometric Algebra, CGA . 54
4.3 Camera Model and Ray Casting . 55
4.4 Ray Geometries for Basic Objects . 56

4.4.1 Ray-Object Intersections . 56
4.4.2 Extracting Normals and Reflecting Rays 58

4.5 Ray Tracing Evolved Circles . 62
4.5.1 Intersection Point of Ray and Interpolated Surface 63
4.5.2 Analytic Form for Normals . 67

4.6 Calculating the Derivative of the Object Manifold Projection 70
4.6.1 Closed Form Derivative of the Square Root Operation 71
4.6.2 Closed Form Derivative of the Projector 72

4.7 Ray Tracing Evolved Point Pairs . 73
4.7.1 Closed Form Solution for the Intersection of a Ray and an Evolved

Point-Pair Surface . 73
4.7.2 Bounding Sphere and Normal Calculation 74
4.7.3 Special Cases of Evolved Point-Pairs 75
4.7.4 Triangular Facets from Evolved Point-Pairs 76

4.8 Bézier Curves and Hermite Splines through Geometric Primitives 77
4.8.1 Linear Interpolation as a Linear Bézier Curve 77
4.8.2 Quadratic Bézier Curve . 78
4.8.3 Cubic Bézier Curves . 78
4.8.4 Nth Order Bézier Curve . 79
4.8.5 Rational Bézier Curves . 79
4.8.6 Hermite Cubic Curves and Splines 80

4.9 Examples of Ray Tracing Simple Objects and Evolved Surfaces 81
4.10 Meshing Evolved Surfaces . 83
4.11 Summary and Conclusions . 86

5 REFORM 87
5.1 Introduction . 88
5.2 Proximity-based matching . 88
5.3 Finding the rotor between two sets of matched objects 91
5.4 Iterative matching and rotor estimation . 92
5.5 Incorporating sampling . 95
5.6 Matching scenes of mixed geometric primitives 99

xii Table of contents

5.7 Conclusions . 99

II Kinematics, Dynamics and Robotics 101

6 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics 103
6.1 Introduction . 104

6.1.1 Screw Theory . 104
6.1.2 CGA . 104
6.1.3 PGA . 104

6.2 Forces, moments and static equilibrium 105
6.2.1 What is a force? . 105
6.2.2 Representations of wrenches in CGA and PGA 108
6.2.3 Forces as dual lines in CGA . 109
6.2.4 Forces as lines in PGA . 112
6.2.5 Force and moment representations in the GA literature 112

6.3 Screw transformations, instantaneous twists, and the motor manifold 114
6.3.1 Time derivatives of frame transformations 114

6.4 Momentum and inertia . 116
6.4.1 Screw momentum . 116
6.4.2 Mapping from screw velocity to screw momentum 116
6.4.3 The Screw Inertia Tensor . 124
6.4.4 Motor Bivectors as the Principal Screws of Inertia 127

6.5 Unconstrained rigid body dynamics . 129
6.6 Constrained dynamics via virtual power 131
6.7 Constrained dynamics by pinned multivectors 133
6.8 Geometric objects as constraints . 135

6.8.1 Point constraint . 136
6.8.2 Point-pair constraint . 136
6.8.3 Direction constraint . 136
6.8.4 Flat point constraint . 137
6.8.5 Line constraint . 137
6.8.6 Circle constraint . 138
6.8.7 Plane constraint . 138
6.8.8 Sphere constraint . 138

6.9 Pinning parametric multivectors paths . 139
6.10 Pinning linear functions of parametric multivector paths 140

Table of contents xiii

6.11 Mapping Screw Velocity to Lie Algebra Velocity 140
6.11.1 Exponential Mapping and the Bortz Equation 141
6.11.2 Cayley Mapping . 142
6.11.3 Outer Exponential Mapping . 143

6.12 Conclusions . 145

7 The Kinematics of Multi-body Systems in Geometric Algebra 147
7.1 Introduction . 147
7.2 Geometric Algebra . 148
7.3 Twists in Kinematic Chains . 150
7.4 Geometrically Constrained Kinematic Pairs 153
7.5 The Geometry of Real Joints . 154

7.5.1 Spherical Joint . 154
7.5.2 Cylindrical Joint . 155
7.5.3 Planar Joint . 155
7.5.4 Revolute Joint . 155
7.5.5 Prismatic Joint . 156
7.5.6 Universal Joint . 156

7.6 The Kinematic Constraint Matrix and the Jacobian Matrix 157
7.7 Case Study: The Delta Robot . 158

7.7.1 Geometry of a Delta Robot . 159
7.7.2 Calculating the Robot Pose . 160
7.7.3 Full Geometry and Kinematic Constraint Matrix of the Delta Robot 164
7.7.4 From Constraint Matrix to Jacobian Matrices 167
7.7.5 Calculating the Jacobian with Direct Differentiation 169
7.7.6 Comparing Direct Differentiation to Screw Theory 174

7.8 Conclusions and Future Work . 175

8 Conclusions 177
8.1 Main Contributions . 177
8.2 Future Work . 177

References 179

Chapter 1

Introduction and Background

Let’s think the unthinkable, let’s do the undoable. Let us

prepare to grapple with the ineffable itself, and see if we may

not eff it after all.
Douglas Adams, Dirk Gently’s Holistic Detective Agency

1.1 Introduction

There are many reasons that are given in the literature for studying Geometric Algebra (GA).
It is claimed to produce many elegant formulae, it is described as imbuing linear algebra with
intuitive geometric meaning and it is claimed to be both computationally efficient and easy to
program up. During the course of my PhD I have found many of these claims to be true but
from my perspective the real benefit of the GA framework is in ‘bootstrapping’ the learning
of multiple fields. GA is a very broadly applicable framework for expressing problems
from various topics and as a result it allows a practitioner to leverage their knowledge from
previous domains when coming to a new problem or field. This bootstrapping advantage is
one of the main reasons I have enjoyed this PhD, with GA in my toolbox it feels like large
swathes of previously inaccessible research are now within reach.

The last few years have seen somewhat of a spike in interest in GA from various disci-
plines but perhaps most notably from the computer graphics community. Open source GA
software has advanced to a point where it is now mature and performant enough to use in
real production code environments and there are growing communities of professionals and
academics alike designing and implementing GA algorithms on a daily basis.

2 Introduction and Background

Despite enjoying the topic I think it is important to emphasise that, despite some grandiose
claims in the community, GA is fundamentally one amongst several alternative tools in a
mathematical toolbox. As someone new to the field, and to mathematical engineering
research in general, there is a danger of myopic referencing and working siloed within the
GA literature. I have tried throughout to tie this work into the broader mathematical world but
the more research I have read the more my reading list has expanded and, as my supervisor
has reminded me, at some point you just have to sit down and write the thesis.

This thesis has been put together from published work of the last few years. It pretty
much follows the germination of one idea, namely that adding together geometric primitives
in CGA can be a useful, and perhaps intuitive, thing to do. In Part I. we show how this idea
came about, its relationship to rotor driven transformations between primitives, some of the
properties of the addition of objects, and some of the applications in graphics, vision and
visualisation. In Part II. we show how we can use the addition of lines to represent the screws
of Screw Theory allowing us to construct a coordinate free basis for, and extend techniques
from, that field.

Along the way specific bits of this thesis have been published as stand alone papers:

• Chapter 2 has been published in ‘Advances in Applied Clifford Algebras’ as ‘Calculat-
ing the Rotor Between Conformal Objects’ [75]

• Chapter 3 has been published in ‘Advances in Applied Clifford Algebras’ as ‘Direct
Linear Interpolation of Geometric Objects in Conformal Geometric Algebra’ [48]

• Chapter 4 has been published in ‘Advances in Applied Clifford Algebras’ as ‘Exploring
Novel Surface Representations via an Experimental Ray-Tracer in CGA’ [47]

• Chapter 5 has been published in ‘Advances in Applied Clifford Algebras’ as ‘REFORM:
Rotor Estimation From Object Resampling and Matching’ [49]

• Chapter 6 has been submitted to ‘Advances in Applied Clifford Algebras’ as ‘Screw
Theory in Geometric Algebra for Con- strained Rigid Body Dynamics’

• Chapter 7 has been submitted to ‘Advances in Applied Clifford Algebras’ as ‘The
Kinematics of Multi-body Systems in Geometric Algebra’.

1.2 Basics of GA

Geometric Algebras, also known as Clifford Algebras, are a class of algebras that allow
operations between objects of mixed grade. Here we will give a quick introduction to the

1.2 Basics of GA 3

topic and state some of the required background and results that will be put to use throughout
the thesis. As the literature is fairly extensive we would suggest a reader not familiar with
the subject, or looking for proofs of some of the more fundamental results, to consult one
of the excellent books on the topic [27][29]. As the notation used in the field varies quite
widely between research groups we will also remind the reader of our notation at the start of
each chapter.

1.2.1 Defining a Specific Subalgebra

Typically when working in GA we choose to work in a specific closed subalgebra. Often
we will define this algebra with 3 integers p,q,r which represent the number of orthogonal
basis vectors in a set which square to +1,−1,0 respectively. To define an algebra we then
can write Cl(p,q,r). This notation is often known as the signature of the algebra. Algebras
with r ̸= 0 are known as degenerate algebras and have to be handled in specific ways in order
to work correctly. We often label the orthogonal basis vectors with numbers or symbols and
ascribe specific geometric or problem specific significance to the various members of the set.

1.2.2 The Products of GA

The fundamental product of GA is the geometric product. The geometric product is both
associative and distributive. The orthonormal basis vectors anticommute with each other and,
as we have already specified what they square to, we can compute simplified forms of the
products of several vectors. Take for example the algebra Cl(1,1,0), consider two vectors in
this space:

a = α1e1 +α2e2, b = β1e1 +β2e2

The geometric product of these two vectors is:

ab = (α1e1 +α2e2)(β1e1 +β2e2)

= α1β1e1e1 +α1β2e1e2 +α2β1e2e1 +α2β2e2e2

= α1β1−α2β2 +(α1β2−α2β1)e1e2

The result of the geometric product of two or more orthogonal vectors is known as a
blade. We refer to the number of orthogonal vectors multiplied together to create a given
blade as the grade of the blade. A blade made of the product of h basis vectors is often given
a subscript notation:

Ah =
h

∏
i=1

ei

4 Introduction and Background

A linear combination of blades of different grades is known as a multivector. A linear
combination of blades of the same grade is known as a pure grade multivector. For an algebra
with N orthogonal basis vectors the highest grade blade that can be constructed is also of
grade N and is known as the pseudoscalar of the algebra and often denoted I.

The second most fundamental operation on a multivector in GA after the geometric
product is grade selection (also known as grade projection). Grade selection returns only the
part of the multivector of a given grade. We often use the ⟨X⟩h notation to denote selecting
grade h from multivector X . With this notation we can define grade selection by considering
a multivector X defined as the sum of blades of several grades with scalar coefficients,
X = ∑g λgAg:

⟨X⟩h = ⟨∑
g

λgAg⟩h = λhAh

All other products are defined in terms of the geometric product and grade selection. In this
thesis we will refer to the inner product which we will represent by ·, the outer product that
we will represent with ∧, and the commutator product that we will represent with ×. The
inner product that we will use throughout this thesis is defined as follows:

Ag ·Bh = 0 g = 0

Ag ·Bh = 0 h = 0

Ag ·Bh = ⟨AgBh⟩|g−h| otherwise

Note that the choice of the inner product with scalars being 0 or not varies among researchers
and software systems. We have chosen this inner product to match the one used in the
‘clifford’ python package [52]. The outer product has the following standard definition:Ag∧Bh = 0 g+h > p+q+ r

Ag∧Bh = ⟨AgBh⟩g+h otherwise

In the same way we use the shorthand ∏i Xi to imply the geometric product of several
elements so we use the notation

∧
i Xi to imply the wedge product of several multivectors.

The commutator product is typically denoted with a cross, ×, and is defined in terms of the
geometric product:

A×B =
1
2
(AB−BA)

For more information about these products see Doran and Lasenby [27].

1.2 Basics of GA 5

1.2.3 Reciprocal and Pseudo-reciprocal Frames

A particularly useful tool for constructing proofs in GA is the concept of reciprocal frames.
Given an ordered set of multivectors, Xi, we define a reciprocal frame of multivectors, X i,
which have the property Xi ·X i = 1, for all i. When dealing with degenerate metric algebras
(those with r ̸= 0 in the signature) however we have to use a slightly different construction,
the pseudo-reciprocal frame [43]. A pseudo-reciprocal frame Pi has the following property
Xi∧Pi = I, for all i, where I is the pseudoscalar of the algebra. The concept of reciprocal
and pseudo-reciprocal frames will come up many times throughout this thesis.

1.2.4 Linear Multivector Mappings

One of the most commonly used types of mapping of a multivector is a linear mapping (also
known as a linear function). Linear mappings are exceptionally useful in applied mathematics
and are typically represented as matrices with a fixed basis. GA by default does not define a
fixed basis for its multivectors, it does however define products that act in a coordinate-free
way. If we have a linear mapping of a multivector F we can represent this mapping as a
matrix of real coefficients ci j acting on a vector of multivector coefficients for a given basis
Xi by the following construction:

ci j = F(Xi) ·X j

For a degenerate metric algebra we can do the same with a pseudo-reciprocal frame, followed
by the selection of the coefficient of the pseudoscalar:

ci jI = F(Xi)∧P j

1.2.5 Multivector Reverse and Multivector Inverses

The reverse is one of the fundamental operations of GA. The reverse of a multivector A is
defined as:

Ã = (∑
g

Ag)̃ = ∑
g
(−1)g(g−1)/2Ag

Like many operations in GA the reverse is linear and thus distributes over addition:

(A+B)̃ = (∑
g
(Ag +Bg))̃ = Ã+ B̃

6 Introduction and Background

A topic that has been the subject of much study in recent years is multivector inverses.
The goal of multivector inversion is this: for a given multivector, A, to find an multivector,
B, such that AB = 1, we would then describe B as the inverse of A. Not all multivectors are
invertible, however for those that are we can invert them with the matrix based techniques of
Perwass [81], the specific closed form solutions of Hitzer [61] or the general closed form
solutions of Shirokov [92]. For invertible multivectors in low dimensional algebras these
techniques should all give the same results but for the sake of clarity we will state that unless
explictly mentioned we use the inverse as described by Shirokov in [92].

1.2.6 Rotors

An aspect of the GA framework that has found widespread use is the inclusion of geometrical
transformations as elements of the algebra. The primary mechanism by which we represent
geometrical transformations are with a class of multivectors known as rotors.

A rotor, often denoted R, in a specific subalgebra can be constructed by the geometric
product of an even number of unit 1-vectors from that subalgebra. Whatever signature algebra
you use rotors always have certain properties, namely RR̃ = 1 and R is made up of a sum of
strictly even grade elements. To perform a transformation with a rotor we sandwich a vector,
X , with a rotor and the reverse of that rotor.

Y = RXR̃

Rotor application is grade preserving and can be extended over the outer product producing
the result [27]: ∧

i

(RAiR̃) = R(
∧

i

Ai)R̃

The signature of the algebra determines what types of geometric transformations are available
in the rotor group of that algebra.

1.3 3D CGA

1.3.1 Homogeneous Point Embedding

The Conformal Geometric Algebra (CGA) was first described by Hestenes in [56] and has
been one of the most popular GA frameworks for solving practical problems ever since.
CGA has a signature of Cl(4,1,0), three basis vectors e1,e2 and e3 that square to +1 and
an additional pair of basis vectors e+ and e− that square to +1 and −1 respectively. These

1.3 3D CGA 7

additional basis vectors are used to form two null vectors n∞ = e++e− and n0 =
1
2(e−−e+).

These null vectors are then used to define a point embedding via the formula:

X =
1
2

x2n∞ + x+n0

which is sometimes referred to as X = up(x). An important consequence of this specific
point embedding is for a given point X :

X2 = 0

and more generally for a point X = 1
2x2n∞ + x+n0 and point Y = 1

2y2n∞ + y+n0 we get the
result:

XY =−1
2
(x− y)2

The embedding is a homogeneous representation of the point, ie. X and λX for scalar λ both
represent the same 3D point. To invert the mapping we therefore first have to normalise the
point X such that:

X̂ =− X
X ·n∞

we can then extract the components of x via the dot product:

x =
3

∑
i=1

(X̂ · ei)ei

or via:
x = (X̂ ∧E0)E0

where E0 = n∞∧n0. The mapping from a conformal point back to the 3D point it represents
is sometimes referred to as down(X).

1.3.2 Geometric Primitives

One of the primary motivations for shifting to a higher dimensional algebra to represent
3D space is that it allows us to represent a richer set of possible entities. Some of the most
immediately useful objects that CGA allows us to represent are the geometric primitives,
these primitives are represented by the blades of the algebra and can be constructed with the
outer product of several points.

These geometric primitives can also be parameterised in their dual form with the classic
parameters that we would associate with a geometric primitive of that type. We will introduce

8 Introduction and Background

these primitives for the specific 3D CGA in more detail as we work our way through the
thesis but here we will simply mention that they come in two types, primitives formed from
the outer product with n∞, sometimes known as ‘flats’, and those without n∞ sometimes
known as ‘rounds’ [29].

1.3.3 Intersections

In many contexts where we are working with geometric primitives we are interested in
computing their intersections. In CGA we can use the meet to compute intersections; the
meet is represented by the∨ operator. The meet is taken with respect to a subspace, depending
on the entities involved and the context in which this meet operation takes place, this subspace
is either the full space or the smallest possible subspace that contains the operands of the
meet operation. In this thesis we will state explicitly in which subspace the meet takes place.

1.3.4 Transformations

The rotor driven transformations of CGA include all conformal transformations. The full
group of conformal transformations has 8 degrees of freedom, but many applications stick to
using only the 6 degree of freedom rigid body motion subgroup. Additionally the primitives
of CGA support reflection/inversion via the double sided formula:

X ′ = PXP

where P is a given blade. The reflection operations are practically useful in many situations
and particularly find application in computer graphics.

1.3.5 Duality

The duality operation in CGA is performed by multiplication with the pseudoscalar. In
non-degenerate metric algebras such as CGA primitives behave reasonably under rotor
transformations whether represented dually or directly, and as such the idea of privileging
one representation over another makes very little sense. In practice we tend to use one
representation over another when it fits the way in which we choose to parameterise a
problem. In this thesis we will switch between dual and direct primitive representations fairly
fluidly throughout.

1.4 3D PGA 9

1.4 3D PGA

1.4.1 Homogeneous Point Embedding

The 3D Plane-based (or Projective) Geometric Algebra (PGA), like the 3D CGA uses a
homogeneous embedding, representing points as trivectors. PGA has a signature of Cl(3,0,1).
The specific embedding used in 3D PGA is:

X = J(x+ e0)

where eiei = 1∀i ∈ 1,2,3 and e0e0 = 0. The inverse mapping is:

x = J
(
−X
⟨X · I3⟩0

− I3

)
where J represents the (linear) duality operation of PGA that we will describe shortly.

PGA is an algebra designed to model only the Euclidean motions and has a point
embedding that is familiar to graphics programmers. As we will see later in the thesis this
point embedding is identical in fact to the embedding of 3D points as ‘flat points’ in CGA.
One of the advantages of embedding points in this way is that normalised points can be
interpolated linearly without correction terms.

1.4.2 Geometric Primitives

PGA is a subalgebra of CGA, it is in fact the subalgebra of the flat elements of CGA. This
means that it contains points, lines and planes as primitives which have grades 3, 2 and 1
respectively.

1.4.3 Intersections

Intersections in PGA can again be computed with the same collection of operators that we
use in CGA. PGA however is a more ‘opinionated’ algebra, it chooses a default space for its
geometric primitives and the intersection between these primitives are always computed with
the outer product.

1.4.4 Transformations

The bivectors of PGA are exactly the Euclidean motion generators and as such the rotor
driven transformations in PGA are the rigid body motions. This is generally a useful thing,

10 Introduction and Background

one of the advantages of PGA is its simplicity; if all you need is flat objects and the Euclidean
group there is not much point creating the whole conformal group and then just playing with
part of it.

1.4.5 Duality

Duality in degenerate metric algebras is a tricky business. As the pseudoscalar now squares
to 0 it is not possible to dualise simply by multiplication with it. Instead we use the concept
of pseudo-reciprocal frames to calculate an alternative dual formulation.

For a given basis vector of PGA, Xi, we will select a pseudo-reciprocal frame, X i, such
that Xi∧X i = I. We can then construct a linear operator J in the following form:

J(A) = ∑
i
⟨A∧X i⟩IX i

where we use the notation ⟨⟩I to mean taking the coefficient of the pseudoscalar. This linear
operator acts as a dual for PGA and, especially when dealing with lines, is a convenient and
useful construction.

This dual does however produce one of the more interesting issues with the PGA; in
general the dual of the transformation of a primitive by a rotor is not the same as the
transformation of the dual of the primitive, ie. RP∗R̃ ̸= (RPR̃)∗. In general this leads to a
selection of one specific space as the primary space for primitves in the PGA, normally the
so called plane-based representation of primitves where points are 3-vectors.

1.5 Other GA Frameworks

Several other GA frameworks have been studied over the last few years, and some of them
will be mentioned in this thesis. Many of these constructions have been designed to extend
CGA in some way to include more geometric primitives and transformations, most notably
there has been a push to include higher dimensional primitives such as conics [64] and
quadrics [12, 33] as well as a goal of representing richer groups of transformations [31].

Part I
Computer Graphics, Computer Vision

and Visualisation

In this Part of the Thesis we develop techniques that may find application in the fields of
graphics, vision and visualisation. Graphics, vision and visualisation have long been a
promising application area for geometric algebra and indeed much of the present interest in
the field is driven from the perspective of computer graphics. Here we link the generation of
rotors directly from geometric objects to the idea of direct addition of geometric primitives in
CGA. We explore applications of addition of CGA objects in 3D computer vision scenarios
and then extend the idea of addition of objects to interpolation and extrapolation and construct
and visualise evolved splines and surfaces.

Chapter 2

Calculating the rotor between conformal
objects

We shape our tools, and thereafter our tools shape us.
John M. Culkin

2.1 Introduction

In this chapter we will address the problem of recovering covariant transformations between
objects – specifically; lines, planes, circles, spheres and point pairs. Using the covariant
language of conformal geometric algebra (CGA), we will derive such transformations in a
very simple manner. In CGA, rotations, translations, dilations and inversions can be written
as a single rotor, which is itself an element of the algebra. We will show that the rotor which
takes a line to a line (or plane to a plane etc.) can easily be formed and we will investigate
the nature of the rotors formed in this way.

If we can recover the rotor between one object and another of the same type, a useable
metric which tells us how close one line (plane etc.) is to another, can be a function of how
close this rotor is to the identity. Using these ideas, we find that we can define metrics for
a number of common problems, specifically recovering the transformation between sets of
noisy objects.

14 Calculating the rotor between conformal objects

2.2 Related Work

Our primary aim in this chapter is to simultaneously estimate the rotation and translation
that takes one object (line to line/circle to circle/plane to plane/sphere to sphere/point-pair
to point-pair) to another. There are many methods that estimate rigid body transformations
with points [34][98][95][24]. In [62] the authors estimate a general rotor between arbitrary
objects using the idea of carriers – while interesting, this method lacks simplicity and does
not deal directly with the objects themselves.

2.3 Conformal Geometric Algebra

The objects we work with here will be CGA objects unless explicitly stated otherwise. We
will use the standard extension of the 3D geometric algebra, where our 5D CGA space is
made up of the standard spatial basis vectors {ei} i = 1,2,3, plus two additional basis vectors,
e and ē with signatures, e2 = 1, ē2 =−1. Two null vectors can then be defined as: n∞ = e+ ē
and n0 =

e−ē
2 . The mapping of a 3D vector x to its conformal representation X is given by

X = F(x) = 1
2(x

2n∞ +2x−2n0). Many of our target applications will be in computer vision,
and in investigating algorithms which use more than just points, which is the case with most
conventional computer vision algorithms.

2.4 A Rotor between Objects

Suppose we wish to find the rotor (rotation, translation, dilation) which takes an object X1 to
an object X2 (where X1 and X2 are conformal n-blades representing the lines/circles/planes/
spheres/point pairs). If we firstly take lines as an example, conventionally we would translate
along the common perpendicular and then rotate about the intersection point – which requires
a series of non-trivial geometric operations for two arbitrary lines in space. Here we seek a
method which will not require reverting to the geometric properties of the lines, but which
will give the transformation in terms of the lines themselves – and we wish this method to be
valid for all objects. In CGA, let the rotor which takes X1 to X2 be Rx, where this comprises
both rotation, translation and dilation rotors. We assume both objects are normalised such
that X2

1 = X2
2 = γ , where γ = 1 for lines, circles and point pairs, and γ =−1 for planes and

spheres:

X2 = RxX1R̃x

2.4 A Rotor between Objects 15

Note, that X̃ =−γX . We motivate our approach by considering the quantity (X1 +X2)

which is in some sense the ‘average’ object; ie, if we reflect X1 in (X1 +X2), we should get
some function of X2 (we assume for convenience that X2 = 1, ie γ = 1):

(X1 +X2)X1(X1 +X2) = (1+X2X1)(X1 +X2)

= [2+(X1X2 +X2X1)]X2 ≡ KX2 (2.1)

So the reflection does indeed produce a multiple, though the multiple is a scalar plus
4-vector, of X2. Since we can write the LHS of equation 2.1 as

(X1 +X2)X1(X1 +X2) = [(X1 +X2)X1]X1[X1(X1 +X2)] = (1+X2X1)X1(1+X2X1)˜

we propose to use the spinor quantity Z = 1+ γX2X1 to form Rx. As above (but now with γ

included) ZX1Z̃ gives ;

Y = ZX1Z̃ = 2X2 + γ(X1X2 +X2X1)X2 = (2+ γM12)X2 = KX2 (2.2)

where M12 = X1X2 +X2X1 is the anticommutator of X1 and X2. Thus, we see that Z takes
X1 to a multiple of X2, where this multiple involves the anticommutator of the objects. In
general this anticommutator will have scalar and 4-vector parts (the bivector part of X1X2

cancels with the bivector part of X2X1).
Since all 4-vectors square to give a scalar, we can take K∗ = ⟨K⟩0−⟨K⟩4, such that

KK∗ = ⟨K⟩20−⟨K⟩24, is a scalar, which we call µ . We show later that µ is always positive.
We now multiply both sides of equation 2.2 by K∗ to give:

1
µ

K∗ZX1Z̃ = X2

We now look to split up K∗ such that S2 = K∗, where S = α +βM12 ≡ (α +β ⟨M12⟩0)+
β ⟨M12⟩4 and α and β are scalars. If S takes this form, it is clear that it is both self-reverse
and commutes with Z and X1; we can therefore write

(
1
√

µ
SZ
)

X1

(
1
√

µ
SZ
)∼

= X2

16 Calculating the rotor between conformal objects

so that 1√
µ

SZ is our required rotor and µ = K∗K. To find such an S we can use the square

root formula given in [30] or simply equate scalar and 4-vector parts of the equation S2 = K∗.
We do the latter first in order to see how the particular form of our scalar plus 4-vector
behaves and then confirm that it agrees with the formula in [30]:

(α +β ⟨M12⟩0)2 +2β (α +β ⟨M12⟩0)⟨M12⟩4 +β
2⟨M12⟩24 = ⟨K⟩0−⟨K⟩4

Since ⟨K⟩0 = 2+ γ⟨M12⟩0 and ⟨K⟩4 = γ⟨M12⟩4, we have:

(α +β ⟨M12⟩0)2 +β
2⟨M12⟩24 = ⟨K⟩0

2β (α +β ⟨M12⟩0)⟨M12⟩4 = −γ⟨M12⟩4

From equating 4-vector parts we see that 2β (α + β ⟨M12⟩0) = −γ so that, provided
⟨M12⟩4 ̸= 0;

S =− γ

2β
+β ⟨M12⟩4

If ⟨M12⟩4 = 0 we simply have S =
√
⟨K⟩0 if ⟨K⟩0 is positive, which it is for lines, planes,

circles and point pairs. ⟨K⟩0 can take negative values for some sphere cases. If ⟨M12⟩4 ̸= 0
we then find β from the equation which equates scalar parts:

1
4β 2 −β

2
λ = ⟨K⟩0

where ⟨M12⟩24 ≡ ⟨K⟩24 = −λ , since the 4-vectors always square to give zero or a negative
scalar. This is a quadratic in u = β 2:

4λu2 +4⟨K⟩0u−1 = 0 (2.3)

with solutions given by:

u =
−4⟨K⟩0±4

√
⟨K⟩20 +λ

8λ

As β 2 = u we need the solution which is guaranteed to be positive:

β
2 =

1
2λ

(√
⟨K⟩20 +λ −⟨K⟩0

)
=

1
2λ

(
√

µ−⟨K⟩0)

2.4 A Rotor between Objects 17

Recall K = 2+ γ(X1X2 +X2X1) = ⟨K⟩0 + ⟨K⟩4, K∗ = ⟨K⟩0−⟨K⟩4, λ = −⟨K⟩24, µ =

K∗K = ⟨K⟩20 +λ , so is always positive (as λ ≥ 0). We can now write the explicit form of the
rotor as:

1. If ⟨M12⟩4 ̸= 0:

Rx =
1
√

µ

(
− 1

2β
+β ⟨K⟩4

)
(1+ γX2X1) (2.4)

β
2 =

1
2
(√

µ + ⟨K⟩0
) (2.5)

2. If ⟨M12⟩4 = 0 and ⟨K⟩0 > 0

Rx =
1√
⟨K⟩0

(1+ γX2X1) (2.6)

3. If ⟨M12⟩4 = 0 and ⟨K⟩0 < 0,

Rx =
1√
|⟨K′⟩0|

(1+ γX̄2X1) (2.7)

where X̄2 =−X2 and K′ = 2+ γ(X1X̄2 + X̄2X1).

Taking the positive or negative square root for β simply changes the sign of the rotor,
which makes no difference to the transformation. These expressions hold for all CGA objects:
lines, planes, circles, spheres, point pairs. The following subsection will give the explicit
forms for each of these objects and will discuss the third case which can occur for spheres.

Before looking in more detail at the nature of the rotors formed by the process outlined
here, we return to equation 2.1 and note that we can now take X1 to X2 via a reflection in the
quantity Xm where

Xm =
S
√

µ
(X1 +X2)

where S and µ are as given previously, ie µ =K∗K and S takes the form in equations 2.4,2.6,2.7
depending on the nature of M12. We will see in Chapter 3 that the quantity S√

µ
projects

the m-vector obtained from the addition of the two blades X1 and X2 onto an m-blade and
therefore an object – the object being that in which we reflect X1 in to get X2.

18 Calculating the rotor between conformal objects

We can also confirm the solutions in equations 2.4,2.6,2.7 using the result in [30], where
the square root of the scalar plus 4-vector, Σ, is given by

√
Σ =

Σ± [[Σ]]√
2
√
⟨Σ⟩± [[Σ]]

=
⟨Σ⟩± [[Σ]]√

2
√
⟨Σ⟩± [[Σ]]

+
⟨Σ⟩4√

2
√
⟨Σ⟩± [[Σ]]

where [[Σ]] =
√
⟨Σ⟩2−⟨Σ⟩24. Here, our Σ = K∗ = ⟨K⟩0−⟨K⟩4, so that (taking the solution

corresponding to the + sign):

[[Σ]] =
√

µ and
√

2
√
⟨Σ⟩+[[Σ]] =± 1

β

giving
√

Σ =− 1
2β

+β ⟨K⟩4, as required (taking − 1
β

).

2.4.1 Lines

Conformal lines take the form L = A∧B∧n∞, with A, B being the conformal representations
of two points lying on the line, and n∞ the point at infinity. L̃ =−L and we normalise such
that L2 = 1, therefore γ = 1. For lines, the 4 vector part of the anticommutator takes the form
β I5n∞ ≡ β I3n∞, thus the square of this is always zero, which means λ = 0 and µ = ⟨K⟩20,
which reduces equation 2.3 to u = 1/(4⟨K⟩0) and β =±1/(2

√
⟨K⟩0 [note that it does not

matter which sign we take], giving us the simpler form of the rotor as:

R =
1
⟨K⟩0

(√
⟨K⟩0−

⟨K⟩4
2
√
⟨K⟩0

)
(1+L2L1)≡

1√
⟨K⟩0

(
1− ⟨K⟩4

2⟨K⟩0

)
(1+L2L1) (2.8)

2.4.2 Planes

With planes, as with lines, there is no issue of scaling as the objects are infinite. A plane Π is
taken to be the conformal 4-blade of the form A∧B∧C∧n∞, with A,B,C any 3 conformal
points lying on the plane. Conformal planes square to a negative number, so we assume that
planes are normalised such that Π2 =−1, therefore γ =−1. Note that Π̃ = Π.

For planes the anticommutator is a scalar and it is not hard to show that (for normalised
planes) ⟨K⟩0 is always positive. Thus, the form for the rotor in the plane-to-plane case is
particularly simple as the ⟨K⟩4 term vanishes:

2.4 A Rotor between Objects 19

RΠ =
1√
⟨K⟩0

(1−Π2Π1) (2.9)

where K = 2− (Π1Π2 +Π2Π1).

2.4.3 Circles

One might think that the case of circles-to-circles would be more complex, as a transformation
which takes one arbitrary circle to another involves a dilation as well as a rotation and
translation. However, nothing in the above derivation assumed anything specific about the
rotor, and we find that we can use precisely the same formula to move between arbitrary
circles.

Let us start with two conformal circles, C1 and C2 not necessarily of the same radius. A
conformal circle is a 3-blade of the form P∧Q∧R, where P,Q,R lie on the circle. Circles
square to a positive scalar, so we will assume that our circles are normalised such that C2 = 1
and therefore γ = 1. Note that C̃ =−C.

The anticommutator, M12, is in general a scalar plus 4-vector, so we must use the form
given in equations 2.4,2.5 and little simplification is possible:

Rc =
1
√

µ

(
− 1

2β
+β ⟨K⟩4

)
(1+C2C1) (2.10)

β
2 =

1
2λ

(
√

µ−⟨K⟩0) (2.11)

with K = 2+(C1C2 +C2C1), µ = K∗K.

2.4.4 Spheres

We start with two conformal spheres, S1 and S2 not necessarily of the same radius. A
conformal sphere is a 4-blade of the form N∧P∧Q∧R, where N,P,Q,R lie on the sphere.
Circles square to a negative scalar, so we will assume that our spheres are normalised such
that S2 =−1 and therefore γ =−1. Note that S̃ = S.

As for planes, ⟨K⟩24 is zero, so the rotor takes a very simple form:

Rs =
1√
|⟨K⟩0|

(1− S̄2S1) (2.12)

20 Calculating the rotor between conformal objects

where K = 2− (S1S̄2 + S̄2S1), S̄2 = S2 if ⟨K⟩0 > 0 and S̄2 = −S2 if ⟨K⟩0 < 0. −S2 is the
same sphere as S2, so in a sense it does not matter whether we take S1 to S2 or to −S2 – this
additional complexity occurs with spheres as they lack any intrinsic orientation, which is not
the case for lines, planes, circles and point pairs.

2.4.5 Point Pairs

In the conformal setting, point pairs take the form A∧B where A,B are conformal points
– we can think of a point pair as a line segment. For a point pair, P, clearly P̃ = −P and
P2 gives a positive scalar. We will therefore assume that point pairs are normalised so that
P2 = 1.

Since the anticommutator will generally have both scalar and 4-vector parts, we again
have the general form taken from equations 2.4,2.5:

Rp =
1
√

µ

(
− 1

2β
+β ⟨K⟩4

)
(1+P2P1) (2.13)

β
2 =

1
2λ

(
√

µ−⟨K⟩0) (2.14)

with K = 2+(P1P2 +P2P1), µ = K∗K.

2.4.6 Lines to Circles: Planes to Spheres

Note that in the previous rotor derivation we assumed X1 and X2 were blades of the same
grade, but nothing further. Therefore, we should, and indeed do, find that the rotor formulae
in equations 2.4-2.7 work for moving between lines and circles and between planes and
spheres.

2.5 The Non-Uniqueness of the Recovered Rotors

Although we have recovered rotors for each case of lines, planes, circles, spheres and point
pairs, it is clear that these rotors are not unique. For example, if we transform one line into
another, we can then translate along the second line without altering the result. So, a natural
question to ask is exactly what is the transformation we are recovering with the 1+X2X1

expression.

2.6 Conclusion 21

To investigate this further we extract the bivector, B, for each recovered rotor, with R = eB,
and plot the interpolated objects for each of λi, i = 1, ..n, with Xi = eλiBX1e−λiBM0, where
X2 = RX1R̃ and λi = i/n. Figure 2.1 shows these interpolations for each class of object.

2.6 Conclusion

In this chapter we have presented a general framework for extracting the conformal rotor
that takes a conformal object of a given grade to another conformal object of the same grade.
The technique works for point pairs, lines, circles, planes and spheres. In the process of
investigating these rotors we have touched on the form of the object required to reflect one
object into another and by visualising intermediate objects we have verified that the rotors
take the objects smoothly to each other. Code that implements this rotor extraction algorithm
is available in the clifford [52] python package and novel applications of this technique are
additionally presented in [35] [48] and [49]. It is also interesting to note that the nature of
the quantity X2X1 was investigated first in [76], and then in [29], and noted to produce a
quantity which was R2, where R is the rotor taking X1 to X2. This has also been used for
interpolations between objects in [18]. Here we have given explicit expressions for the rotor
itself and investigated the a range of use cases.

22 Calculating the rotor between conformal objects

Fig. 2.1 The red objects in each of these images show the interpolations of the rotors formed
from pairs of black objects. Here we see that a range of geometric primitives including
circles, lines and point pairs are all handled elegantly by the same framework.

Chapter 3

Direct linear interpolation of geometric
objects in conformal geometric algebra

I write rhymes with addition and algebra, mental geometry.
Ice T, Mind Over Matter

Abstract

Typically we do not add objects in conformal geometric algebra (CGA), rather we apply
operations that preserve grade, usually via rotors, such as rotation, translation, dilation,
or via reflection and inversion. However, here we show that direct linear interpolation of
conformal geometric objects can be both intuitive and of practical use. We present a method
that generates useful interpolations of point pairs, lines, circles, planes and spheres and
describe algorithms and proofs of interest for computer vision applications that use this direct
averaging of geometric objects.

3.1 Introduction

In this chapter we will look at adding CGA objects and adjusting the resulting multivectors
to produce useful interpolations of the objects. We will present a general technique that is
valid for all geometric objects of grade 2 or above. This technique uses the decompositions
presented in [30].

The objects we work with here will be CGA objects unless explicitly stated otherwise.
We will use the standard extension of the 3d geometric algebra, where our 5D CGA space

24 Direct linear interpolation of geometric objects in conformal geometric algebra

is made up of the standard spatial basis vectors {ei} i = 1,2,3, plus two additional basis
vectors, e and ē with signatures, e2 = 1, ē2 =−1. Two null vectors can therefore be defined
as: n∞ = e+ ē and n0 =

e−ē
2 . The mapping of a 3d vector x to its conformal representation X

is given by X = F(x) = 1
2(x

2n∞ +2x−2n0). 1

3.2 Motivation

In our conformal representation of space the blades of a given grade n represent specific
classes of object and lie on a manifold within the overall subspace of grade n. Typically in
geometric algebra we traverse this manifold using rotors and reflections. These transforma-
tions are incredibly useful and make up the vast majority of operations used in the field of
applied geometric algebra. Unfortunately, while being of geometric significance, rotors and
reflections are often unintuitive ways of thinking about a problem and traditional algorithms
often require significant rehashing to fit within this framework.

For example: Given a cluster of geometric objects we would like to be able to create
an ‘average’ object that lies in some sense in the middle of the bundle. Most geometric
algebra approaches to this problem would likely require the explicit design of a geometrically
motivated cost function followed by constrained optimisation on the blade manifold either
directly or via a parametrisation of rotors over the space.

While this approach has been very effective for a variety of problems, it requires the
careful crafting of clever cost functions, consideration of the convexity of the underlying
space, efficient implementation of the given optimisation scheme etc. The question we aim
to answer here is: what if we just decided to add all the objects together?

3.3 Linearly interpolating conformal points

The result of linear combinations of conformal points is well known [76]. Consider two
arbitrary points in 3d space a and b represented as A and B in our conformal model. Lin-
ear interpolation of these points followed by our conformal embedding produces a linear
interpolation of our conformal points with an additional term in n∞:

F(αa+(1−α)b) = αA+(1−α)B+α(1−α)(A ·B)n∞ (3.1)

1There are a range of different notations in use in the literature to define the basis of CGA: e is sometimes
referred to in other works as e+, ē as e−, n∞ as e∞ and an eo is sometimes defined which is equal to −n0

3.4 Linearly interpolating higher grade conformal objects 25

We can therefore get a useful interpolation of points by taking a direct linear interpolation
and simply adding the final α(1−α)(A ·B)n∞ term to the result. If Y = αA+(1−α)B, we
can recover Y ′ = F(αa+(1−α)b) via the following formula (assuming Y ′ ·n∞ =−1):

Y ′ =
−Y n∞Y

2(Y ·n∞)2

3.4 Linearly interpolating higher grade conformal objects

Objects of grade 2 and above are more difficult to interpolate in a sensible and computationally
efficient way. Typically, schemes that have been found are either only valid for certain objects
in specific cases [26], or the problem is attacked indirectly via carriers [62] or by forming the
rotor between the objects, extracting the corresponding bivector, which is then interpolated
[99] and applied to the first object.

It was shown in Chapter 2 that we can represent the mirror object Xm that reflects one
object X1, into another X2, as the left multiplication of the summation of the blades by a
scalar + 4-vector factor S:

Xm = S(X1 +X2) = (β + γ(X1X2 +X2X1))(X1 +X2) (3.2)

where β and γ are scalars and the 4-vector part of S is proportional to the anticommutator of
X1 and X2.

For the previously known cases in which the linear interpolation of higher grade objects
gives a blade, such as with circles [26] and point pairs [29] both with common points, the
factor S is a scalar and the object Xm is simply ‘half-way’ between the objects. We can extend
this notion to the cases where the addition of objects is not a blade by using our object Xm,
which has been corrected to being a blade, as the half-way object. We can use this idea of
the half-way object to recursively subdivide the space between X1 and X2 allowing us to
create objects that are any fraction of X1 and X2. While this technique allows us to generate
interpolant objects from any two objects (of the same type), it is nevertheless clumsy to
represent fractional interpolant objects via repeated subdivision. This subdivision technique
also provides no obvious way of performing an average of many objects. What we would
really like is some way of directly dealing with the linear interpolation αX1 +(1−α)X2.

26 Direct linear interpolation of geometric objects in conformal geometric algebra

3.5 Creating a blade from a pure grade multivector

Consider the general interpolant, X ′α = αX1 +(1−α)X2 where X1 and X2 are blades of the
same grade. We claim that we can project X ′α into object space in a simple and general way.
First we will generalise equation (3.2) to the interpolation case:

Xα = S(αX1 +(1−α)X2) = (βα + γα(X1X2 +X2X1))(αX1 +(1−α)X2) (3.3)

where βα and γα are once again scalars.
Since S is of the form (scalar + 4-vector) it is self reverse. Defining S− = ⟨S⟩0−⟨S⟩4 we

get the result that S−S is a scalar, and can therefore write X ′α = kS−Xα where k is a scalar
and k = 1

S−S .
To use this decomposition we need to extract S from X ′α . To do this we can use the

methods of Chapter 2, or as follows using the square root operator of Dorst and Valkenburg
[30].

Let SX ′α = Xα , where Xα is a valid object (squaring to ± 1). Now define Σ ∈Cl0,4
4,1 , ie. it

only contains 0 and 4 grade coefficients and is an element of the conformal algebra. Then,

defining [[Σ]] =
√
⟨Σ⟩20−⟨Σ⟩24, the square root can be found as:

√
Σ =

Σ± [[Σ]]√
2
√
⟨Σ⟩0± [[Σ]]

=
⟨Σ⟩0± [[Σ]]√

2
√
⟨Σ⟩0± [[Σ]]

+
⟨Σ⟩4√

2
√
⟨Σ⟩0± [[Σ]]

(3.4)

To use this method to find S− we multiply our non-blade object by its own reverse:

X ′α X̃ ′α = (kS−Xα)(kS−Xα)˜= k2S−Xα X̃α(S−)˜=−k2S−(S−)˜=−k2(S−)2 (3.5)

This is now in a form where we can apply the above square root formula:

kS− =
√
−X ′α X̃ ′α (3.6)

It now simply remains to isolate Xα via multiplication by kS where kS = ⟨kS−⟩0−⟨kS−⟩4.
Since (kS)(kS−) is a scalar, we have

Xα =
kS

(kS)(kS−)
X ′α ≡ SX ′α (3.7)

This result is particularly important as we have identified a way of projecting any pure
grade object of the form S−X (with X a blade) back to the blade manifold. An immediate

3.5 Creating a blade from a pure grade multivector 27

Fig. 3.1 Linear interpolation between different geometric objects.
(a) circles, (b) point pairs, (c) planes, (d) spheres. The pure red and green objects here
represent X1 and X2 and the intermediate colours show the interpolations between them. Here
we are stepping linearly through α between 0 and 1 with the number of steps chosen to show
the interpolations as clearly as possible.

application of this is that we can now deal with arbitrary linear combinations of objects,
allowing us to smoothly interpolate as well as to average and cluster geometric primitives.
Additionally we can correct numerical errors that result from arithmetic operations to give
true blades again. Figure 3.1 shows examples of interpolating various geometric objects.

As shown in Chapter 2 this method holds for all the standard normalised conformal objects
of grade 2 or above (point pairs, lines, circles, planes, spheres). The direct interpolation
method is potentially more computationally efficient than the bivector interpolation method,
and its form indicates that it is covariant, ie, for a rotor transformation given by R,

R[αX1 +(1−α)X2]R̃ = αRX1R̃+(1−α)RX2R̃

Unfortunately, we cannot apply this form of interpolation to points as we encounter a
problem due to the fact that for a conformal point P, PP̃ = 0. However, we saw in equation
(3.1) that points can be interpolated very easily using known explicit formulae.

28 Direct linear interpolation of geometric objects in conformal geometric algebra

0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 0,2 1,3 2,4 3,5 4
2 2 1,3 0,2,4 1,3,5 2,4 3
3 3 2,4 1,3,5 0,2,4 1,3 2
4 4 3,5 2,4 1,3 0,2 1
5 5 4 3 2 1 0

Table 3.1 Resulting grades from the geometric product of pure grade objects. The grade 4
row is highlighted here as it is of specific interest for the form of the S in equation (3.3).

3.6 Techniques for understanding interpolant properties

In order to use the interpolant blades it is useful to get a handle on some of their properties.
In several cases it is possible to get good insight into how the interpolant behaves by looking
at the interpolant of the dual of the blades, but in others we need to consider the form of the
(scalar + 4-vector) required to project the interpolant back to the blade manifold. As before
we write our blades as:

Xα = (⟨S⟩0 + ⟨S⟩4)(αX1 +(1−α)X2)

From this we immediately see that for the multiplication to be grade preserving we
require ⟨S⟩4X1 and ⟨S⟩4X2 to give only objects of grade n where n is the grade of X1 and X2.
Table 3.1 shows the resultant grades from the geometric product of pure grade objects and
Table 3.2 shows the resultant grades from the inner product. These tables are presented here
for reference and will be returned to when dealing with individual grade blades.

3.7 Point pairs

We start with point pairs. Previous work [29] has shown that when an end point is shared
between point pairs A and B the interpolant point pairs are also blades and their end points
trace out the circumference of the circle formed by the shared point and the additional
separate end points. Three points X ,Y,Z define a circle C ∝ X ∧Y ∧Z and a fourth point
V lying on the circle will satisfy V ∧C = 0 , this allows us to define a check to see if two
point pairs are chords of the same circle. Point pairs A = V ∧X , B = Y ∧ Z will satisfy

3.7 Point pairs 29

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 1 2 3 4
2 0 1 0 1 2 3
3 0 2 1 0 1 2
4 0 3 2 1 0 1
5 0 4 3 2 1 0

Table 3.2 Resulting grades from the inner product of pure grade objects. In the case of the
inner product of a multivector and a scalar by definition the result is always 0 rather than
some other scalar valued function of the scalar and multivector. Here again the grade 4 row
is highlighted here as it is of specific interest for the form of the S in equation (3.3).

A∧B = 0 if they are both chords and any additional chord, W , of the same circle will satisfy
W ∧A = 0,W ∧B = 0 and thus W ∧ (A+B) = 0. This leads to:

Theorem 1 If point pairs A and B are both chords of a common circle C the interpolant point
pairs T ∝ αA+(1−α)B are blades and also have end points lying on C as ⟨AB⟩4 =A∧B= 0
and (αA+(1−α)B)∧ (A+B) = 0.

Note, since ⟨AB⟩4 = A∧B = 0, the projector S is a scalar. The common circle itself is
the ‘join’ of the two original point pairs and can be computed with the algorithms supplied in
Chapter 21 of Dorst, Fontijne and Mann [29]. Figure 3.2 shows two cases of the interpolation
of co-planar point pairs that lie on the same circle.

Turning to the more general case of two point pairs in arbitrary positions in space we can
get insight into the form of the interpolant by considering the components of the scalar +
4-vector projection factor. In the case of the geometric product between grade 4 and grade
2 objects we see from Table 3.1 that we produce both 2 and 4-vector grades. The 2-vector
part of the geometric product comes from the inner product between the point pairs and the
4-vector. ie. for point pairs A and B, ⟨S⟩4(αA+(1−α)B) = ⟨S⟩4 · (αA+(1−α)B). For the
general case of two point pairs not lying in plane ie. A∧B ̸= 0, we can show that there is
only one object that behaves in this way, the sphere Σ ∝ A∧B, as it passes through both end
points of both point pairs. This is illustrated in Figure 3.3 and suggests that the sphere Σ is
intrinsically tied to the form of the interpolant objects. Indeed we can see from the same
visualisation that the interpolant C of point pairs A and B always has endpoints lying on the
surface of the sphere Σ.

30 Direct linear interpolation of geometric objects in conformal geometric algebra

Fig. 3.2 The interpolation of point pairs with endpoints lying in the same plane and on a
common circle is a blade and also lies on the same common circle, even in cases in which
there are no shared endpoints or intersections. In this figure the red lines are the interpolation
of the black lines.

Fig. 3.3 The interpolation in red of point pairs A and B, here shown in black, lie on the
surface of the sphere ∝ A∧B, shown in blue with black equator circle.

3.7 Point pairs 31

We can prove this by showing that C∧B or C∧A also produces the sphere:

Σ ∝ A∧B

First consider an interpolant object C and its outer product with one of the original objects, B

C = (⟨S⟩0 + ⟨S⟩4)(αA+(1−α)B)

C∧B = ((⟨S⟩0 + ⟨S⟩4)(αA+(1−α)B))∧B

= ⟨S⟩0(αA+(1−α)B)∧B+(⟨S⟩4(αA+(1−α)B))∧B

as B∧B = 0 we see that

α⟨S⟩0A∧B = ⟨S⟩0(αA+(1−α)B)∧B

Now we just need to prove that ⟨S⟩4((αA+(1−α)B)∧B) is a scalar multiple of A∧B.
From equation (3.3) we know that

⟨S⟩4 ∝ ⟨AB+BA⟩4

it is therefore sufficient to prove that:

T = (⟨AB+BA⟩4(αA+(1−α)B))∧B ∝ A∧B

We can convert the outer product into a geometric product followed by a projection and thus
can write:

T = ⟨⟨AB+BA⟩4(αA+(1−α)B)B⟩4
= ⟨⟨AB+BA⟩4(αAB+(1−α))⟩4
= (1−α)(⟨AB⟩4 + ⟨BA⟩4)+α⟨(⟨AB⟩4 + ⟨BA⟩4)AB⟩4

As ⟨AB⟩4 ≡ ⟨BA⟩4 we can write this as:

T = 2(1−α)⟨AB⟩4 +2α⟨⟨AB⟩4AB⟩4

and this can further simplified using the fact that:

⟨⟨AB⟩4AB⟩4 = ⟨⟨AB⟩4⟨AB⟩0⟩4

32 Direct linear interpolation of geometric objects in conformal geometric algebra

As ⟨AB⟩0 = A ·B is a scalar:

T = 2(1−α)⟨AB⟩4 +2α⟨AB⟩4(A ·B)
= 2((1−α)+αA ·B)⟨AB⟩4

As 2((1−α)+αA ·B) is a scalar we see that the proof is completed

2((1−α)+αA ·B)⟨AB⟩4 ∝ ⟨AB⟩4 ≡ A∧B

Figure 3.3 shows a graphical representation of the interpolant point pairs lying on the surface
of the sphere. To summarise:

Theorem 2 For non-coplanar point pairs A and B, all interpolant point pairs lie on the
surface of the sphere Σ ∝ A∧B.

3.8 Circles

The interpolant of circles has a range of properties that are useful and clearly intrinsically tied
to the geometry of spheres and point pairs. Initially we will consider the case of two circles
in space that both lie on the surface of a common sphere. In past work it has been shown that
circles with two common points interpolate directly without requiring re-projection and the
interpolant lies on their common sphere [26] [29]. Here, as with the point pairs, we can show
that this is true for a broader class of circles:

Theorem 3 If circles C1 and C2 together define the caps of a common sphere then ⟨S⟩4 ∝

⟨C1C2⟩4 = 0 where S is of the form shown in equation (3.3) and thus any interpolant object
C3 = αC1 +(1−α)C2 is a blade without requiring re-projection to the blade manifold.

This can be proved by considering each circle Ci as the intersection of a plane Pi and a
sphere Σi. Forming this intersection via the dual (where X∗ = XI5 and I5 is the 5D space
pseudoscalar as before), we have:

C1 = (Σ∗1∧P∗1)I5

C2 = (Σ∗2∧P∗2)I5

⟨C1C2⟩4 =−⟨(Σ∗1∧P∗1)(Σ
∗
2∧P∗2)⟩4

Since (Σ∗1∧P∗1) and (Σ∗2∧P∗2) are both bivectors:

⟨C1C2⟩4 =−Σ
∗
1∧P∗1 ∧Σ

∗
2∧P∗2

3.8 Circles 33

and so if Σ2 ∝ Σ1:

⟨C1C2⟩4 ∝−Σ
∗
1∧P∗1 ∧Σ

∗
1∧P∗2 = 0

We can additionally find the unique common sphere by finding the join of the circles or
by reverting to linear algebra techniques:

Conjecture 1 If circles C1 and C2 together define the caps of a common sphere Σ then
⟨C1Σ⟩3,⟨C2Σ⟩3 = 0. Σ can be found by the following process:

First we define:

¯
A =

[
¯
M3 ¯

C1

¯
M3 ¯

C2

]
where M3 is the truncated identity matrix that performs selection of grade 3 elements from a
vector of coefficients and

¯
C1 and

¯
C2 are the matrices that perform the left geometric product

of C1 and C2 respectively with a vector of coefficients. We can then find the Σ for
¯
A

¯
Σ = 0

where
¯
Σ is a vector of canonical blade coefficients limited to only the 4-vector blades. In the

case that C1 and C2 are the same radius then Σ ∝ (C1 +C2)((C1 +C2)∧n∞)I5.

The case for circles of the same radius is visualised in Figure 3.4.
It is also the case that the interpolant lies on the surface of the common sphere:

Theorem 4 If circles C1 and C2 together define the caps of a common sphere then all
interpolant circles C3 = αC1 +(1−α)C2 (which we have shown to be blades) also lie on
the surface of the sphere Σ common to both.

We can prove this by considering the outer product of the interpolant circle with D, an
arbitrary point on the common sphere Σ:

Σ ∝ D∧C3 = αD∧C1 +(1−α)D∧C2

Figure 3.5 shows an example of this interpolation.
Thus far we have dealt exclusively with circles on a common sphere. In the case in which

C1 and C2 do not lie on the same sphere we can again look at how the interpolants behave by
considering the form of the (scalar + 4-vector) that we use to project the interpolant back to
the blade manifold. In the case of the geometric product between grade 4 and 3 objects we
see from Table 3.1 that we produce both 1 and 3-vector grades, however the 1-vector part
of the geometric product comes only from the inner product between the 4-vector and the
circles. To maintain grade after the multiplication the 4-vector must therefore be the object

34 Direct linear interpolation of geometric objects in conformal geometric algebra

Fig. 3.4 The half way circle C1 +C2 shown in red in this figure is the equator of the sphere
through both C1 and C2 if they define a common sphere and have the same radius

Fig. 3.5 The interpolation of circles C1 and C2 is a blade and lies on the surface of a sphere if
C1 and C2 define a common sphere.

3.9 Lines 35

that has an inner product of zero with both circles. This object is the sphere into whose
surface both circles plunge orthogonally [29]:

Theorem 5 If circles C1 and C2 together do not lie on a common sphere then the 4-vector
from our blade projection equation ⟨S⟩4 ∝ ⟨C1C2⟩4 is itself a blade and geometrically
represents the sphere through which both circles plunge orthogonally. ie. C1 · ⟨C1C2⟩4 = 0.
This property means all interpolant circles after projection to the blade manifold also plunge
through ⟨C1C2⟩4 orthogonally. ie. C3 · ⟨C1C2⟩4 = 0.

The intersections of the interpolant circles with the sphere ⟨S⟩4 produce a set of point
pairs. Intuition would suggest that these point pairs have properties tied to the interpolation of
the point pairs generated by the original two circles C1 and C2 and indeed we can numerically
verify that this is the case:

Conjecture 2 If circles C1 and C2 together do not lie on a common sphere then the intersec-
tion point pair Pα formed by the meet of the circle interpolant for a given value of α with the
orthogonal sphere ⟨C1C2⟩4 ie. Pα ∝ Cα ∨⟨C1C2⟩4 is the same as the re-projected interpolant
Πα of the point pairs formed from the meet of C1 and C2 with ⟨C1C2⟩4.

Figure 3.6 shows the interpolation of two non co-spherical circles as well as the sphere these
circles define and the intersection point pairs they generate.

3.9 Lines

When looking at lines we can attempt to use some of the same techniques that we used for
circles. First consider the form of ⟨S⟩4 ∝ ⟨L1L2⟩4. For lines ⟨L1L2⟩4 ∝ I5n∞, giving the form
of the projection of (X1 +X2) as:

X3 = (µ +νI5n∞)(X1 +X2) (3.8)

where µ and ν are scalars. While neat, this form I5n∞ does not on its own provide information
on the properties of the interpolated line. Instead we consider the interpolation of the dual of
the lines, and to understand this interpolation we must take a short detour via screw theory.

3.9.1 Screw Theory

Screw theory was developed by Sir Robert Stawell Ball in 1900 in his seminal work ‘A
treatise on the theory of screws’ [2]. His original applications were kinematics and one of

36 Direct linear interpolation of geometric objects in conformal geometric algebra

Fig. 3.6 The interpolation of the two black circles which are not spherical caps, intersect
orthogonally with a single sphere (shown in blue). The point pairs formed from the two
intersection points are shown in yellow.

3.9 Lines 37

Fig. 3.7 The orbit of a line

the most important theorems in the area, Chasles’ theorem, states that the most general rigid
body displacement can be described by a screw transformation. More recently screw theory,
and the highly related study of dual quaternions, has been applied to robotics, computational
geometry and multibody dynamics [67, 80, 68].

Screw transformations consist of a translation along an axis and a rotation around that
axis. To parameterise a screw we define the direction of the screw axis via a unit vector m̂, a
point on the screw axis p and a screw pitch h. The pitch represents how far to move in the
direction of the screw axis for each complete revolution about the axis.

3.9.2 Bivector representation of a line

A line in CGA is represented as a 3-vector, or dually as a bivector:

L∗ = m̂I3 +(p∧ m̂)I3n∞ (3.9)

This bivector formulation is equivalent to the Plücker coordinates of the line.
In [30] the authors describe the orbit of simple bivectors that describe motion. We can

visualise the orbit of the dual line bivector by exponentiating the bivector to a rotor and
applying it to a test point. Figure 3.7 shows the orbit of the point at the origin about a line.
The motion is a circle about the line.

38 Direct linear interpolation of geometric objects in conformal geometric algebra

Fig. 3.8 The action of a basic screw formed by the summation of commuting bivectors
applied to the point at the origin is shown in black, it forms a screw motion about the screw
axis shown in red.

3.9.3 The bivector representation of a screw

To represent a screw we will couple the rotational motion of the dual of a line with a
translation in the direction of that same line. The bivector T that transforms along the 3d
vector t is:

T = tn∞ (3.10)

If t = hm̂ where h is a scalar, ie. the translation is in the screw axis direction, the rotors
formed from the bivectors in equations (3.9) and (3.10) commute.

It then follows that the rotor formed from the addition of the bivectors in equations (3.9)
and (3.10) can be split into the rotor representing translation along the axis and the rotor
representing rotation about the axis – as required for a screw. We therefore have a screw, S,
whose action on the point at the origin is shown in Figure 3.8.

S= m̂I3 +(p∧ m̂)I3n∞ +hm̂n∞ (3.11)

Hestenes and Sobczyk [56] p81 gives an expression for decomposing any bivector into two
commuting blades. In the case of our screw bivector these blades represent the dual of the
screw axis L∗ and a translational bivector T in the direction of the screw axis. ie. given a

3.9 Lines 39

screw bivector S we can decompose it as:

S= L∗+T

3.9.4 Adding dual lines

The addition of dual lines produces a bivector. Visualising the action of this bivector allows
us to see that it is in fact also a screw transformation. Consider the addition of two dual lines:

L∗+ = L∗1 +L∗2

we can write this elementwise as

L∗+ = m1I3 +ψ1n∞ +m2I3 +ψ2n∞

where ψi is (pi∧mi)I3. We then rearrange to give something proportional to the expression
in equation (3.11):

L∗+ = (m1 +m2)I3 +(ψ1 +ψ2)n∞ = mI3 +(p∧m)I3n∞ +hmn∞

Where clearly m=m1+m2. If we divide this by |m|we have the general form of a normalised
screw

S= m̂I3 +(p∧ m̂)I3n∞ +hm̂n∞

Gathering like terms, specifically those without an n∞ component, leads us to the conclusion
that our screw axis direction m̂ must simply be proportional to the addition of the directions
of the two lines. Using this fixed axis direction we can extract the coefficient h (the pitch) of
the translation bivector parallel to the screw axis:

m = m1 +m2

L∗+ = mI3 +(p∧m)I3n∞ +hmn∞

L∗+ ·n0 = hm+(p∧m)I3

h =
(L∗+ ·n0) ·m
|m|2

40 Direct linear interpolation of geometric objects in conformal geometric algebra

Fig. 3.9 The addition of two dual lines, here shown in black, produces a screw, whose action
on the point at the origin is again shown in black. The screw can be decomposed into two
commuting bivectors, whose actions are shown in red and blue. The bivector whose action is
shown in red is the dual of the screw axis line, also shown in red.

With this coefficient known we now have all the pieces in place for a full decomposition of
the dual line addition bivector L∗+:

L∗+ = L∗1 +L∗2
m =−⟨L∗+⟩(e12,e13,e23)I3

h =

(
(L∗+ ·n0) ·m
|m|2

)
S= L∗+T

T = hm̂n∞

L∗ = S−T

Figure 3.9 shows the decomposition of the addition of two lines into its component parts.

3.9.5 Relationship to object manifold reprojection

We can also analyse the screw multiplied by its own reverse, comparing this formulation
with our object manifold reprojection to get the projection coefficient S in terms of the screw

3.10 Planes 41

parameters:

SS̃=−(L∗)2 +T T̃ +T L̃∗+L∗T̃

= 1−2T L∗

= 1+2hn∞I3 = 1+2hI5n∞

≡ (kS−)2

(kS−) = µ +νI5n∞

(kS−)2 = µ
2 +2µνI5n∞

µ = 1, ν = h

Using this calculated value we can see how the projection coefficient acts on the addition of
lines:

L∗ ∝(1−hI5n∞)(mI3 +(p∧m)I3n∞ +hmn∞)

= mI3 +(p∧m)I3n∞ +hmn∞−hmn∞

= mI3 +(p∧m)I3n∞

This is in fact the same line as is formed from the decomposition of the screw bivector into
the screw axis bivector and pitch translation bivector. In other words, the addition of lines
and reprojection to the line manifold extracts the axis of the screw formed from the addition
of their duals. This axis has a direction equal to a linear interpolation of the axes of the
original two lines and, as it is a mirror object, passes through the point exactly half way
between the lines.

3.10 Planes

All 4-vectors are blades. Thus, for planes and spheres it is impossible to construct an invalid
geometric object by addition. For planes we can analyse the form of the interpolant by again
looking at the dual of a plane.

The dual of the plane can be written as:

P∗ = m̂+dn∞

where m̂ is the 3D vector normal to the plane and d is the perpendicular distance of the plane
from the origin. Thus the interpolation of duals of two planes can be written as:

42 Direct linear interpolation of geometric objects in conformal geometric algebra

Fig. 3.10 The interpolant of two planes (green to red) always passes through the meet line
(black) of the two original planes.

αP∗1 +(1−α)P∗2 = αm̂1 +αd1n∞ +(1−α)m̂2 +(1−α)d2n∞

which, when we collect like terms, is already in the form of a dual plane P∗3 :

P∗3 = αm̂1 +(1−α)m̂2 +(αd1 +(1−α)d2)n∞ (3.12)

this dual plane has a normal vector that is the interpolation of the normal vectors of the
original two planes and has a perpendicular distance from the origin that is also simply an
interpolation of the perpendicular distance from the origin of the original two planes. An
important feature of this plane interpolation is that, as noted in [13], provided the two planes
intersect, the interpolant plane always passes through the line of intersection (the meet) of
the two original planes. This is visualised in Figure 3.10. In the case that the planes to not
intersect (or more formally are said to intersect at infinity) the interpolation will smoothly
translate one plane to the other keeping the normal fixed, the parallel vs anti-parallel cases
are explored in Figures 3.11 and 3.12.

3.11 Spheres

The interpolant of spheres has been studied before in [13] and [26]. As with planes, all
interpolants of spheres are valid objects as ⟨Σ1Σ2⟩4 = 0 and have the property of making
contact with the meet of the spheres at all points during the interpolation. We can see the

3.11 Spheres 43

Fig. 3.11 The interpolant of two parallel planes smoothly moves between the start and end
points (green to red) while maintaining the direction of the normal.

Fig. 3.12 The interpolant of two anti-parallel planes (green to red) must go via infinity due
to the sign change. Care must be taken with the orientation of objects when designing
algorithms using these interpolations.

44 Direct linear interpolation of geometric objects in conformal geometric algebra

form of the interpolant sphere by considering its dual form:

I5Σ3 = αI5Σ1 +(1−α)I5Σ2

The dual form of a sphere can be decomposed into the sum of the conformal centre point P
and negative half the radius squared times n∞:

I5Σ = P− 1
2

ρ
2n∞

the interpolation of the dual of two spheres is therefore

I5Σ3 = αP1 +(1−α)P2−
1
2
(αρ

2
1 +(1−α)ρ2

2)n∞

For two concentric spheres ie. P2 = P1 we can therefore see that the interpolation between
them will remain centred in the same place and will simply have a radius ρ3 which varies as
ρ2

3 = αρ2
1 +(1−α)ρ2

2 .
As we have seen previously, the interpolation of two conformal points P1 and P2 is of the

form
αP1 +(1−α)P2 = F(α p1 +(1−α)p2)−α(1−α)(P1 ·P2)n∞

we can therefore also write the interpolation of two non-concentric spheres as:

I5Σ3 = F(α p1 +(1−α)p2)−α(1−α)(P1 ·P2)n∞−
1
2
(αρ

2
1 +(1−α)ρ2

2)n∞

Collecting like factors shows that the centre point of the interpolated sphere moves linearly
along the line joining p1 and p2

I5Σ3 = F(α p1 +(1−α)p2)−
(

α(1−α)(P1 ·P2)+
1
2
(αρ

2
1 +(1−α)ρ2

2)

)
n∞

Furthermore, writing the dot product of points in terms of their euclidean vectors we can see
that the radius of the sphere varies along its interpolation path

I5Σ3 = F(α p1 +(1−α)p2)−
1
2
(
−α(1−α)(p1− p2)

2 +αρ
2
1 +(1−α)ρ2

2
)

n∞

and so the radius ρ3 varies as

ρ
2
3 =−α(1−α)(p1− p2)

2 +αρ
2
1 +(1−α)ρ2

2

3.11 Spheres 45

For fixed values of ρ1 and ρ2 this implies ρ2
3 varies as −(p1− p2)

2 and so the further apart
the two spheres are the smaller the radius of the interpolant. To find turning points we
differentiate with respect to α

dρ2
3

dα
= (−1+2α)(p1− p2)

2 +ρ
2
1 −ρ

2
2

setting this to zero yields a single turning point at

α =
ρ2

2 −ρ2
1 +(p1− p2)

2

2(p1− p2)2

Considering the second derivative

d2ρ2
3

dα2 = 2(p1− p2)
2

we see that this is always positive and so the stationary point is a minimum.
For the case that the surfaces of Σ1 and Σ2 are just touching we have the condition

(p1− p2)
2 = (ρ1 +ρ2)

2 = ρ
2
1 +ρ

2
2 +2ρ1ρ2

returning to the first derivative in this case

α =
2ρ2(ρ1 +ρ2)

2(ρ1 +ρ2)2 =
ρ2

(ρ1 +ρ2)

this value of α is the point at which the centre of the interpolant sphere lies on the surface of
both spheres. At this point the squared radius is zero:

ρ
2
3 =− ρ2

(ρ1 +ρ2)

ρ1

(ρ1 +ρ2)
(ρ1 +ρ2)

2 +
ρ2

(ρ1 +ρ2)
ρ

2
1 +

ρ1

(ρ1 +ρ2)
ρ

2
2

ρ
2
3 =
−ρ2ρ1(ρ1 +ρ2)+ρ2ρ2

1 +ρ1ρ2
2

(ρ1 +ρ2)
= 0

Pulling the spheres further apart from this point so that they no longer intersect will therefore
produce a sphere with negative radius, an imaginary sphere. These results are already known
[13] and are here included for completeness.

46 Direct linear interpolation of geometric objects in conformal geometric algebra

3.12 Applications

The ability to interpolate geometric objects suggests a wide variety of applications in the
areas of computer vision and graphics. There are many traditional algorithms in vision
that rely solely on point information from images and ignore lines and other, potentially
useful, geometric primitives. Many of these algorithms have been non trivial to translate into
the framework of CGA due to having to specify transformations between objects explicitly
rather than implicitly via the objects themselves. The ability to average geometric objects
directly suggests immediate applications in clustering of objects extracted from real data,
interpolation to produce surfaces and other areas for problems where we might normally use
linear algebra.

3.12.1 Higher order spline interpolation through objects

With the ability to construct arbitrary linear combinations of blades we naturally might
wonder about the applications of this to spline generation through control objects. Figure
3.13 shows an example of interpolating through different control objects with different orders
of spline. As expected, higher order interpolation produces smoother surfaces through our
objects.

3.12.2 Recursive scene simplification by averaging conformal objects

When extracting geometric primitives from triangulated CAD models from point cloud data
or from images, there are often many objects that lie close to each other in space. Line
segment detectors, for example, will often extract long lines as multiple line segments that
need stitching together. We would like a way of simplifying these noisy models by collapsing
objects that are close together into a single object. One way to do this is via a recursive
filtering algorithm as follows:

1. Set a minimum cost threshold for difference between objects

2. Compute the cost between all objects of the same grade in the scene

3. If all costs are above the threshold then terminate the algorithm

4. Average the two objects with the smallest cost

5. Return to step (2)

3.12 Applications 47

Fig. 3.13 Interpolation through control objects.
Top: Circles. Bottom: Point pairs.
Interpolation type: (a,d) Linear, (b,e) Quadratic, (c,f) Cubic

48 Direct linear interpolation of geometric objects in conformal geometric algebra

Fig. 3.14 A 3d line model before (above) and after (below) recursive scene simplification.

3.12 Applications 49

Fig. 3.15 Three clusters of 3d lines correctly segmented by the algorithm.

This leads to a simplified model that retains the core features of the original model. For
comparison of objects Xi and X j we use the cost function Ci j for a rotor Ri j as defined in [35]:

Ci j = ⟨(Ri j−1)(R̃i j−1)⟩0 + ⟨Ri j∥R̃i j∥⟩0 (3.13)

where R∥ = R · e, and gives the component of R having n∞ as a factor and Ri j is the rotor that
takes Xi to X j as described in [75]. An example of this algorithm working on simulated lines
is shown in Figure 3.14.

This algorithm is simply one way to perform scene simplification and it has a high
computational complexity making it run slowly for large numbers of objects, but is included
here as an example of one potential area the averaging of object methodology may be applied
to.

3.12.3 k-means clustering of conformal objects

One of the most fundamental and simple clustering algorithms is known as k-means clustering
[32]. Consider a 3d scene composed of k geometric objects of a given grade. We have multiple
noisy observations for each object and so would like to fit k centroids to these clusters to
represent the “true” objects in the world.

50 Direct linear interpolation of geometric objects in conformal geometric algebra

The steps for implementing this clustering are given below:

1. Randomly assign k objects to be the initial positions of the cluster centroids, leave all
other objects unassigned

2. Assign each object in the scene to the centroid closest under our given cost metric,
again we use the cost function given in equation (3.13)

3. If this is not our first iteration and no objects have changed assignment then terminate
the algorithm

4. The centroid of each cluster is moved to the mean of the objects assigned to it, where
mean is defined as the sum of the objects in the cluster projected back onto the blade
manifold

5. Go to step (2)

Figures 3.15 and 3.16 show the successful application of this algorithm on simulated data
– each line or circle has been associated with the cluster (indicated by colour) to which it
is most likely to belong. One of the key advantages of using the averaging of objects and
correction back to a blade for this algorithm is that it is computationally cheap. A typical
approach in GA to this kind of problem might involve attempting to find the mean of a given
cluster by optimisation of our cost function through a space parameterising our centroid
objects. Here we can simply average the objects in each cluster making it feasible to cluster
very large numbers of conformal objects quickly.

3.12.4 Closest point to two non intersecting lines (least squares sense)

Consider two non-intersecting non-coplanar lines in 3d space, L1 and L2. We wish to
find the point P that lies closest to both in a least squares sense. First we will construct
two orthogonal intermediary lines L+ = S+(L1 +L2) and L− = S−(L1−L2) where S(X)

represents the projection of a 3-vector X back onto the line manifold. L+ and L− both lie
half way between the two original skew lines but intersect at right angles . The intersection
of these lines is the point P that lies half way between the original lines. To extract this point
of intersection we can follow the formula given in [76]:

Q = (L−n0L−)n∞(L−n0L−)+L+(L−n0L−)n∞(L−n0L−)L+

P =
−Qn∞Q

(Qn∞Q) ·n∞

3.12 Applications 51

Fig. 3.16 Three clusters of 3d circles correctly segmented by the algorithm. The black circles
here are the final computed cluster centroids.

52 Direct linear interpolation of geometric objects in conformal geometric algebra

3.13 Conclusions

This chapter has shown how we are able to add multiples of conformal objects by factoring
the resulting multivector into a scalar plus 4-vector term and a valid geometric object. We
have then investigated the form of this multivector for each grade of conformal object. Using
the ideas of interpolating and averaging objects, a range of applications are suggested with
relevance in computer vision and computer graphics.

Chapter 4

Exploring Novel Surface Representations
via an Experimental Ray-Tracer in CGA

Arithmetic! Algebra! Geometry! Grandiose trinity! Luminous

triangle! Whoever has not known you is without sense!
Comte de Lautreamont

Abstract

Conformal Geometric Algebra (CGA) provides a unified representation of both geometric
primitives and conformal transformations, and as such holds significant promise in the field
of computer graphics. In this chapter we implement a simple ray tracer in CGA with a Blinn-
Phong lighting model, before putting it to use to examine ray intersections with surfaces
generated from the direct interpolation of geometric primitives. General surfaces formed
from these interpolations are rendered using analytic normals. In addition, special cases of
point-pair interpolation, which might find use in graphics applications, are described and
rendered. A closed form expression is found for the derivative of the square root of a scalar
plus 4-vector element with respect to a scalar parameter. This square root derivative is used
to construct an expression for the derivative of a pure-grade multivector projected to the
blade manifold. The blade manifold projection provides an analytical method for finding the
normal line to the interpolated surfaces and its use is shown in lighting calculations for the
ray tracer and in generating vertex normals for exporting the evolved surfaces as polygonal
meshes.

54 Exploring Novel Surface Representations

Fig. 4.1 Three images rendered with varying lighting positions. These demonstrate the
lighting model, multiple light source capability and recursive tracing of rays for reflections.

4.1 Introduction

Tubular and ribbon surfaces have wide interest in fields such as neuronal modelling and
streamline visualisation. The need to represent vast networks of tubular data efficiently and
render these surfaces in a visually pleasing way has led to a range of different parametric
representations, fitting methods and rendering techniques [83, 3, 84]. Conformal Geometric
Algebra (CGA) encodes circles and line-segments, as well as planes, spheres, infinite lines and
the geometric transformations between them, as natural elements of an algebra [53, 76, 29].
Given its representational power for curved surfaces and simple encoding of complicated
operations, CGA appears to hold great promise in the field of Computer Graphics. Indeed
several ray-tracers/path-tracers/sphere-marchers using CGA have been implemented in the
past [29, 10, 12, 57, 100, 22, 25]. More recently the design of more intricate surfaces has been
investigated with rotors [19] and direct-interpolation of geometric primitives as described
in Chapter 3 and published in [48]. In this chapter we will press some of these techniques
into use to describe tubes and ribbons as well as to develop the techniques required to render
them. Figure 4.1 shows an example of output from the CGA ray-tracer we describe in this
chapter.

4.2 Conformal Geometric Algebra, CGA

The ray-tracer used in this chapter is constructed using CGA and all algebraic expressions
given will be in terms of elements of this algebra. CGA adds two more basis vectors, e and
ē, to the original basis vectors of 3D Euclidean space, giving a complete basis for the 5D
space with the following signature: e2

1 = e2
2 = e2

3 = e2 = 1 and ē2 =−1. These extra basis
vectors are used to define two null vectors: n∞ = e+ ē≡ n and n0 =

ē−e
2 ≡−

n̄
2 – note that

the (n, n̄) notation was that originally used when Hestenes first introduced this model in [56].

4.3 Camera Model and Ray Casting 55

Fig. 4.2 The camera is defined by a focal
length, a transformation from the origin,
and bounds on the image plane.

Fig. 4.3 An image from the ray-tracer con-
taining examples of disks, spheres and
planes.

The mapping from a 3D vector, x, to its corresponding CGA vector, X , is given by:

X = F(x) =
1
2
(
x2n+2x− n̄

)
≡ 1

2
x2n∞ + x+n0. (4.1)

All vectors formed from such a mapping are null. CGA is chosen for the construction
of the ray-tracer since we seek neat expressions for describing intersections, reflections and
lighting models, made possible in CGA since rays and scene objects are both elements of the
algebra. More background on CGA can be found in [53, 76, 29] as well as in the introduction
to this thesis.

4.3 Camera Model and Ray Casting

A pinhole camera model is used with the geometry shown in Figure 4.2. It is defined by a
rotor RMV (where MV indicates model view) incorporating rotation and translation that takes
the camera from the origin to its pose in space, a focal length f and two bounds xmax and
ymax on the size of the image plane.

We take (i, j) = (0,0) to be at the bottom left hand corner of the image. For an image of
width w and height h, the world coordinates of the point Pi j at the centre of pixel (i, j) are
given by:

Wi, j = F(f e2−
xmax

2
(1− (2i/w))e1−

ymax

2
(1− (2 j/h))e3),

Pi j = RMVWi, jR̃MV .
(4.2)

56 Exploring Novel Surface Representations

We then generate the ray from the camera centre, Li j, that passes through Pi j, via the
expression

Li j = X0∧Pi j∧n∞

where X0 is the origin transformed by the model-view rotor RMV to the position of the camera.

4.4 Ray Geometries for Basic Objects

Initially we will start with some basic objects representable as blades in CGA. The ray-tracer
will thus initially concentrate on rendering planes, spheres and circles/discs, an example of
which is shown in Figures 4.1 and 4.3.

4.4.1 Ray-Object Intersections

In order to compute intersections between blades, the meet operator (∨) is used. We will, for
the proposes of this chapter, always take the meet with respect to the full 5D space rather
than to the join of the blades. Thus, if X is an r-grade blade, Y is an s-grade blade, and the
number of basis vectors in the algebra is n, then :

X ∨Y = ⟨XY ⟩2n−r−s I5, (4.3)

where ⟨Z⟩m indicates the m-grade component of the multivector Z, and I5 represents the 5D
pseudoscalar of the algebra.

Planes

A plane is a 4-blade and a ray is a 3-blade so the meet gives a 2-blade. If the meet itself is 0,
the line lies in the plane. If the meet squared is 0, there is no finite intersection. Otherwise,
the intersection point, X , of a line L with a plane Φ, satisfies the following: L∨Φ = λX ∧n∞

[76], where λ is a scalar. When extracting the 3D intersection point x, we need to account
for the sign and magnitude of the line in our extraction, we can do this via the constant of
proportionality λ :

L∨Φ = λX ∧n∞ = λx∧n∞−λn∞∧n0. (4.4)

Therefore, x can be extracted from the eie and eiē coefficients (for i ∈ {1,2,3}) by dividing
by λ , the eē coefficient.

4.4 Ray Geometries for Basic Objects 57

Spheres

Spheres are also 4-blades and so once again, taking the meet with a ray gives a 2-blade, F .
With spheres, there can be zero, one or two points of intersection corresponding to the cases
where F2 < 0, F2 = 0 and F2 > 0 respectively.

If F = A∧B (with A and B null vectors) and F2 ≥ 0, the points can be extracted from the
point pair/blade, F , by the following formula [76]:

σaA =

(
1− F√

−FF̃

)
(F ·n∞), σbB =

(
1+

F√
−FF̃

)
(F ·n∞),

A =
−σaA

(σaA) ·n∞

, B =
−σbB

(σbB) ·n∞

,

(4.5)

where σa,σb are scalar constants. If we define F = A∧B with F oriented in the same
direction as our ray L, then A is the point closest to the origin of the ray, P0, as long as our
sphere is ‘in front of’ the ray source. To ensure the alignment we can pre-normalise our
sphere S via the following expression:

S −→ − S
S∗ ·n∞

. (4.6)

For any given sphere, its dual can square to a positive or negative number; however,
by carrying out the normalisation in equation 4.6, we ensure that all spheres, S, satisfy
S∗ ·n∞ =−1. If the meet of a ray L and a normalised sphere S, is then formed from L∨S, as
in equation 4.3, the resulting bivector will be ordered as A∧B where A is the point that the
ray hits first in its orientation.

In figure 4.4, the meet of the ray (direction as shown) from a point P0 with the smaller
sphere, would result in the point pair A2∧B2. For the larger sphere in figure 4.4, the point
pair resulting from the meet will be A1∧B1. We extract the points from the point pair and
form the distance between these points and P0 (via taking the inner product). We then see
that for the smaller sphere the distance of the first point is less than that of the second point,
whereas for the larger sphere, the distance of the first point is larger than that of the second
point – which will therefore lead us to label the larger sphere as being ‘behind’ the point P0.
This allows us to perform bounces only with spheres that are in front of the ray origin point
P0.

Circles/Discs

Circles are 3-blades and so the meet with a ray gives a 1-vector, Y .

58 Exploring Novel Surface Representations

Fig. 4.4 Image showing the positions of intersection points with spheres.

• If Y itself is zero the ray (or line) lies in the plane of the circle and either does not
intersect the circle or intersects the circle in one or two points.

• If Y 2 < 0, the ray does not lie in the plane of the circle and passes through the circle
disc but does not intersect.

• If Y 2 > 0 the line does not lie in the plane of the circle and passes outside the circle
disc without intersecting.

• If Y 2 = 0 (and Y ̸= 0) the ray intersects the circumference of the circle.

Figure 4.5 shows an example of each case along with a geometric interpretation of the
form of the meet. If Y ̸= 0 and there is an intersection, the plane containing the circle is
formed by taking the wedge product between the circle and n∞, C∧n∞, and the intersection
point is then extracted from the ray and this plane.

If Y = 0, so that the ray lies in the plane of the circle, we need to work in 2D, so that our
‘meet’ will result from taking the 2-part of the geometric product and dualising (with respect
to the plane of the circle) to give a bivector. If the bivector has negative square there are two
intersections at points A and B, so the bivector is A∧B. If the bivector has positive square,
there is no intersection. If the bivector squares to zero there is one intersection at A, and the
bivector is a∧n0, where A = F(a). In all cases, the intersection points are easily extracted.

4.4.2 Extracting Normals and Reflecting Rays

Extracting the normal to the surface of an object at a ray intersection point, X , and the
reflection of that ray at X , are two fundamental building blocks in our ray tracer.

For a plane Φ which intersects with a ray, we can compute the reflection L′ of an incident
ray L (we assume Φ and L have been normalised such that Φ2 =−1, L2 = 1) with the plane

4.4 Ray Geometries for Basic Objects 59

Fig. 4.5 The 5D meet of a ray, L (in red) and a circle C (black) results in a vector Y whose
dual is the sphere S (grey), the properties of this sphere vary with the relative positioning of
C and L. In the top case the ray passes outside of the circle, S passes orthogonally through
both the circle and the ray and squares to a negative number as we would expect from a
standard CGA sphere. In the middle case the ray hits the perimeter of the circle and the meet
squares to zero, in this case the dual sphere is the special case of zero radius, it represents
the intersection point itself. In the bottom case the ray passes inside the circle. Here the
sphere squares to a positive scalar implying it is now an imaginary sphere and in fact the
circle passes through the sphere’s antipodal points.

60 Exploring Novel Surface Representations

Fig. 4.6 A ray in blue hits a sphere. The tangent plane at the point of impact is shown in
green. The inversion of the ray in the sphere produces the red circle. The reflection of the ray
in the tangent plane gives the red line. The reflected ray is also the tangent to the red circle at
the point of impact.

by simple sandwiching: L′ = ΦLΦ. The resulting line is oriented correctly, passes through
the intersection point and L′2 = 1. For the case of a sphere S, we use the following formula
from [76]:

L′ ∝−(X · (SLS))∧n∞, (4.7)

where X is the first point of intersection. Here, SLS is an example of an inversion, where the
incoming ray/line, L, is inverted in the sphere to give a circle which passes through the two
points of intersection and the origin of the sphere (note we only have a meaningful reflection
if there are two points of intersection). The tangent line to this circle at the first point of
intersection, X , is the reflected ray, L′. Figure 4.6 illustrates this geometrical construction.
Note that one can also form the tangent plane at X and reflect L in this plane; this is performed
by the following formula:

L′ ∝ ΦX LΦX , ΦX = (X ·S)∧n∞. (4.8)

4.4 Ray Geometries for Basic Objects 61

Fig. 4.7 An incident ray L (black) hits a sphere from the right hand side of the figure. The
reflected ray L′ (also black) scatters to the top right corner of the figure. For L and L′

normalised such that L2,L′2 = 1, the normal N (red) to the surface is proportional to L′−L.
The tangent line LT (pink) in the plane containing the incident and reflected rays can be
found from LT ∝ L′+L.

For a circle/disc C, we first form the plane C∧n∞ = Φ in which it lies. If the ray intersects
the disc (see section 4.4.1), the reflected ray can then be found using the same formula as for
the plane reflection case: L′ ∝ (C∧n∞)L(C∧n∞). Note that these expressions specifically
give the (correctly oriented) reflected ray that passes through the point of intersection of the
incident ray and the object, rather than a parallel ray at the origin.

We end this section with two very useful constructions which we will put to use later in
the chapter. Firstly, consider the reflected ray, L′, and the incident ray, L, both normalised
such that they square to 1. The normal line to the surface of the sphere, N, can be simply
found:

N ∝ (L′−L).

The tangent line, T , (in the plane containing incident and reflected rays) can similarly be
found from the sum

LT ∝ L′+L.

Figure 4.7 shows a graphical example of these constructions for the reflection of a ray in a
sphere.

62 Exploring Novel Surface Representations

Fig. 4.8 Polynomial interpolation through circular control objects. (a) linear, (b) quadratic,
(c) cubic.

4.5 Ray Tracing Evolved Circles

We will now turn to an interesting class of surface that arises from the direct interpolation of
CGA circles [48], examples of which are shown in Figure 4.8. In order to generate such a
surface, a direct interpolation is first performed between two boundary circles, C1 and C2

both of which are normalised such that C2
1 =C2

2 = 1. Our interpolation is of the form:

C
′
α = αC1 +(1−α)C2, (4.9)

where we take α moving between 0 and 1, which moves us from C2 to C1. The result of
this interpolation is not itself a valid circle and needs to be ‘projected’ onto a blade via
multiplication by a projector, which we shall call S . This projector has only scalar and
4-vector parts and its construction is detailed in [48] and outlined in the following.

Consider a quantity Σ = ⟨Σ⟩0 + ⟨Σ⟩4. We then define the quantity [[Σ]] =
√
⟨Σ⟩20−⟨Σ⟩24,

and with this the principal square root [30] of the scalar + 4-vector, Σ, can be found as:

√
Σ =

Σ+[[Σ]]√
2
√
⟨Σ⟩0 +[[Σ]]

=
⟨Σ⟩0 +[[Σ]]√

2
√
⟨Σ⟩0 +[[Σ]]

+
⟨Σ⟩4√

2
√
⟨Σ⟩0 +[[Σ]]

. (4.10)

With this square root we can then form:

kS − =

√
−C′αC̃′α , (4.11)

where S − is S with the sign of the 4-vector part reversed and 1
k =S −S . We then construct

kS by reversing the sign of the 4-vector part, (kS = ⟨kS −⟩0−⟨kS −⟩4), and use this to

4.5 Ray Tracing Evolved Circles 63

produce the following expression for the projector S and interpolated circle Cα :

Cα =
kS

(kS)(kS −)
C
′
α ≡SC

′
α , α ∈ [0,1]. (4.12)

Given that these surfaces may find genuine applications in computer graphics and CAD, it
is desirable to explore their properties with respect to the ray tracing framework. Specifically,
for a given ray and scene object, the geometric constructions of interest for lighting models
are the point of intersection between a ray and a surface, and the surface normal at that
specific intersection point.

In order to render this surface, we first show how to extract the intersection point with a
given ray and then how to construct the surface normal at this point.

4.5.1 Intersection Point of Ray and Interpolated Surface

We saw earlier that the intersection of a ray with a circle produces the 1-vector Y . If Y = 0 the
ray lies in the plane of the circle and if Y ̸= 0 and Y 2 = 0 there is one intersection. Therefore
(in the case where the meet is not zero) to find the intersection point between our interpolated
surface and a ray L, we need to find a value of α for which:

(Cα ∨L)2 = 0 =⇒ ⟨CαL⟩24 = 0.

The system must also be tested for the case of Y = 0; if an α exists such that (Cα ∨L) = 0,
the ray may intersect Cα once, twice or not at all.

Figure 4.9 provides a simple visual illustration of one example of the shape of this
curve as a function of α . While this example shown in the figure is particularly smooth,
experiments indicate that in the general case this function is not well approximated by low
order polynomials.

Non-linear Intersection Point Finder

As it is in general difficult to extract a closed form expression for the solution to (Cα ∨L)2 =

0, it is necessary to design an iterative algorithm to find the roots of the equation. Our
implemented algorithm works as follows:

1. Check for intersection with a sphere enclosing the entire surface

2. Calculate the value of (Cα ∨L)2 at N intermediate values of α

3. Record where (Cα ∨L)2 changes sign between successive evaluated values of α

64 Exploring Novel Surface Representations

Fig. 4.9 Left: An image showing an example interpolated surface and a ray passing through
it, the circles in blue show the circles which have a meet squared of 0 with the incident ray,
the red circle shows where the meet squared is minimised. Right: A plot showing the value
of the meet squared as a function of α for this case.

4. Locally approximate (Cα ∨L)2 as a quadratic equation in the region of the sign change
and solve to get the value of α at the intersection point

Computing the intermediate objects in the surface can be done once per scene and reused
for all rays calculated in that scene. To generate the enclosing sphere again we reuse the
intermediary objects, in the following way:

1. Given C1 and C2, form intermediate circles, Cα , and then calculate the bounding sphere
which is given by Sα = I5Cα(Cα ∧n∞)

2. Construct a sphere that contains all intermediate circle bounding spheres by successive
application of a two sphere bounding algorithm

Again the enclosing sphere of the object can be calculated once per scene and used for all
rays. Any two sphere bounding algorithm can be used, here we chose the algorithm from
[58] which is summarised as follows:

1. Ensure both spheres S1,S2 are normalised according to equation 4.6

2. Construct the line L joining the centres of both spheres L = (S1I5)∧ (S2I5)∧n∞

3. Intersect the line with the first sphere to produce a point pair L∨S1 = F1 ∝ A1∧B1

and extract A1 using equation (4.5)

4. Intersect the line with the second sphere to produce a point pair L∨S2 = F2 ∝ A2∧B2

and extract B2 using equation (4.5)

4.5 Ray Tracing Evolved Circles 65

5. Check if B2 · (S1I5)> 0, if so S1 encloses S2 and so S1 is the bounding sphere

6. Check if A1 · (S2I5)> 0, if so S2 encloses S1 and so S2 is the bounding sphere

7. If neither original sphere is enclosed by the other, the new bounding sphere is given by
1
2(A1 +B2)I5

This iterative algorithm for the most part performs perfectly satisfactorily. When com-
pared against specially constructed test cases for which the intersection points are known it
produces negligible error. The main downside to this solution is that it is not mathematically
guaranteed to give correct results especially in the case of small numbers of intermediary
objects. In practice we can pre-compute large numbers of intermediary objects before render-
ing, allowing us to get good approximations to the function of interest. Having said that, the
more intermediate objects that are created, the more computationally expensive the process
is, as the root finder has to evaluate our function at each one for each ray.

‘Closed Form’ Solution for the Intersection of a Ray and an Evolved Circle Surface

In this section we will use C′α to be the interpolated circle; however we emphasise that the
process outlined here will also hold for the intersection of rays with other evolved objects.
The intersection of the ray, L, and the surface, SC′α (see equation 4.12) occurs when:

(L∨ [SC′α])
2 = 0.

Writing Σ =−C′αC̃′α , this can be rewritten as:

L∨
[
⟨
√

Σ⟩0C′α −⟨
√

Σ⟩4C′α
]

(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

2

= 0. (4.13)

The denominator of this expression is never infinite (other than in the uninteresting case of
Σ = 0) and so does not contribute roots. Thus we can write:(

L∨ [⟨
√

Σ⟩0C′α]−L∨ [⟨
√

Σ⟩4C′α]
)2

= 0.

Now expanding
√

Σ as:
√

Σ =
Σ+[[Σ]]√

2
√
⟨Σ⟩0 +[[Σ]]

66 Exploring Novel Surface Representations

means we can write:(
L∨

[〈
Σ+[[Σ]]√

2
√
⟨Σ⟩0 +[[Σ]]

〉
0

C′α

]
−L∨

[〈
Σ+[[Σ]]√

2
√
⟨Σ⟩0 +[[Σ]]

〉
4

C′α

])2

= 0.

Again the denominator of the square root function is simply a scalar which is never infinite,
thus it contributes no roots and we can write:(

L∨
[
⟨Σ+[[Σ]]⟩0C′α

]
−L∨

[
⟨Σ+[[Σ]]⟩4C′α

])2
= 0.

The quantity [[Σ]] is a scalar and so distributing the grade selection operators gives us:(
L∨ [⟨Σ⟩0C′α]+ [[Σ]]L∨C′α −L∨

[
⟨Σ⟩4C′α

])2
= 0.

Expanding this leads to:

0 = [L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α)]
2 +[[Σ]]2(L∨C′α)

2

+[[Σ]]
{
(L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α))(L∨C′α)

+(L∨C′α)(L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α))
}
. (4.14)

To make progress on solving this we recall that Σ =−C′αC̃′α and that for our linear interpola-
tion of circles we have defined C′α as:

C′α = αC1 +(1−α)C2 = α(C1−C2)+C2.

As C′α has terms in α of order 1 we would expect Σ to have terms of order 2. Continuing
on this train of thought one might suspect that it is possible to re-write equation (4.14) as a
simple polynomial in α . However, it is easy to see that this is not possible due to [[Σ]], which
is a scalar polynomial in α enclosed entirely in a square root:

[[Σ]] =
√
⟨Σ⟩20−⟨Σ⟩24.

Thus in order to solve equation (4.14) we need to rearrange:

[L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α)]
2 +[[Σ]]2(L∨C′α)

2

=−[[Σ]]
{

L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α)
}
(L∨C′α)

+(L∨C′α)
{

L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α)
}
. (4.15)

4.5 Ray Tracing Evolved Circles 67

We can then square both sides of the equation, eliminating the square root in the process:(
[L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α)]

2 +[[Σ]]2(L∨C′α)
2)2

= [[Σ]]2
[{

L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α)
}
(L∨C′α)

+(L∨C′α)
{

L∨ (⟨Σ⟩0C′α)−L∨ (⟨Σ⟩4C′α)
}]2

. (4.16)

Expanding this out will give a polynomial in α – it turns out that this is a scalar polynomial
due to the fact that ⟨Σ⟩4C′α has only trivector components. This polynomial can then be solved
with any numerical polynomial solver such as finding the eigenvalues of the companion
matrix [63].

For this case of linear evolution of circles we will get a polynomial of order 12, implying
12 potential roots. In reality 6 of these roots are extraneous, generated by the process of
squaring to handle the square root term in [[Σ]]. Some of the 6 remaining roots may be
imaginary, some may be outside of the range 0 ≤ α ≤ 1 and some will be spurious roots
corresponding to S = 0. To filter out the valid roots we simply take all roots between 0 and 1
and evaluate (L∨ [SC′α])

2 at these positions, selecting the roots for which |(L∨ [SC′α])
2|< ε

for some small ε threshold where ε > 0 (in our experiments ε = 10−6 works satisfactorily).
An interesting point to note here is that we could extend this intersection finding method

to C′ being higher order functions of α , so long as (L∨ [SC′α])
2 = 0. Generating such higher

order splines through geometric primitives is described in section 4.8.

A Comment on Rendering Speed

For this chapter our raytracer was implemented in Python with the Clifford Library [52].
It is simply an investigative tool used as a framework in which to conduct basic research
into the shapes and properties of surfaces as well as the algorithms used to render them. Of
course in a production computer graphics environment, a higher performance language such
as C/C++/GLSL would be required and the trade off of accuracy for speed with regard to
the number of intermediary objects would need to be closely analysed. Such an analysis
would require very careful benchmarking and comparison across multiple modern computer
architectures and as such is beyond the scope of this chapter.

4.5.2 Analytic Form for Normals

Given the α for which the ray intersects the surface, we have both the interpolated circle, Cα ,
and the point of intersection X . Using the result from [76], which is also used in equation 4.7,

68 Exploring Novel Surface Representations

we extract a tangential line LC in the plane of the circle at X :

LC = (X ·Cα)∧n∞. (4.17)

We would now like an analytic form for the tangent to the surface corresponding to evolving
the surface through an increment of α , postulating that this will be orthogonal to LC: some
future work remains to understand how these two tangent vectors are related to the directions
of principal curvature. Clearly dC(α)

dα
≡ Ċα will be a key quantity in deriving this additional

tangent vector. A first observation is that the circle and its derivative will be orthogonal to
one another, i.e. Ċ ·C = 0, and that the geometric product is minus itself under reversion, i.e.
ĊC =−CĊ (note that here, and in what follows, we will drop the α subscript on C). This
follows from the fact that C2 =C ·C = 1 (our circles are all normalised), so that:

d
dα

(C ·C) =C ·Ċ+Ċ ·C = 0,
d

dα
(CC) =CĊ+ĊC = 0. (4.18)

Since C · Ċ = −C · Ċ and they are both scalars, this tells us Ċ ·C = 0. Using the fact that
C̃ = −C, we see that CĊ = −CĊ = −(CĊ)̃. As there are no 6-vector parts, this indicates
that the product can only have bivector parts (this is a standard construct in many areas, the
most obvious being rigid body dynamics [27]). Let us call this bivector, ΩC:

ΩC =CĊ. (4.19)

Using the analogy with rigid body dynamics, we think of this bivector as the angular
velocity bivector of the circles as they evolve under the parameter α . We note here that a
similar construction would be possible for the other main objects that we use in CGA, since
they are all normalised to 1 or 0. The null vectors representing points, X , have a constant
‘length’ due to normalisation, so as with the circles, we can differentiate wrt α to see that
X and Ẋ are orthogonal, ie X · Ẋ = 0. If we were to define the ‘velocity’, Ẋ to be the inner
product with the angular velocity bivector given in equation 4.19:

Ẋ = X ·ΩC = X · (CĊ), (4.20)

the condition X · Ẋ = 0 is satisfied since X · (X ·B) = (X ∧X) ·B = 0. Thus, given an X on
the surface, lying on a circle with parameter α , the Ẋ defined above will preserve its length
and is, we claim, the tangential direction required. In order to show this, the first thing we
must do is establish that if we evolve X according to this rule, generating a quantity we call

4.5 Ray Tracing Evolved Circles 69

X(α), then X(α) should lie on Cα , for all α , i.e.,

X(α)∧Cα = 0.

Differentiating this (and again dropping the subscript α for clarity) and using Ẋ = X · (CĊ),
gives

Ẋ ∧C+X ∧Ċ = 0

=⇒ Ẋ ∧C ≡
(
X · (CĊ)

)
∧C =−X ∧Ċ.

We now expand this expression using standard expansion results (a · (Ar ∧Bs) = (a ·Ar)∧
Bs +(−1)rAr∧ (a ·Bs)):(

X · (CĊ)
)
∧C = X ·

(
(CĊ)∧C

)
− (CĊ)∧ (X ·C)

=−1
2
⟨CĊ(XC+CX)⟩4

=
1
2
⟨ĊC(XC+CX)⟩4. (4.21)

The first term on the right hand side of the first line of this expansion is zero as (CĊ)∧C =

⟨CĊC⟩5 = ⟨−C2Ċ⟩5 = ⟨−Ċ⟩5 = 0. Since X lies on C and so X ∧C = 0, we see that XC =CX
which means that

1
2
⟨ĊC(XC+CX)⟩4 = ⟨ĊC2X⟩4 = ⟨ĊX⟩4 = Ċ∧X =−X ∧Ċ

giving Ẋ ∧C = −X ∧ Ċ as required, so the proposed evolution is compatible with the
constraint.

If we therefore assume that Ẋ is the direction we want, we can calculate the tangent line
in this direction via:

LT = Ẋ ∧X ∧n∞. (4.22)

The fact that lines LC and LT are perpendicular can be verified by showing that the
quantity LT LC has only a bivector part (see [76] for a discussion of when intersecting lines
are orthogonal – if two lines L1 and L2 intersect at a point, then ⟨L1L2⟩4 = 0. In addition, if
they are orthogonal, ⟨L1L2⟩0 = 0). If this is the case, LT LC will reverse to minus itself.

To show this, we need to consider the reverse of (Ẋ ∧X ∧ n∞)((X ·C)∧ n∞). We will
need the facts that that XC = CX , ẊC = −CẊ , CĊ = −ĊC, XẊ = −ẊX and C̃ = −C.
We have shown all of these identities earlier in this section. We also need an additional
fact, which is that Ẋ anticommutes with C. To see this we use another standard result

70 Exploring Novel Surface Representations

(a∧ (Ar ·Bs) = (a ·Ar) ·Bs +(−1)rAr · (a∧Bs)):

Ẋ ·C =
(
X · (CĊ)

)
·C = X ∧

(
(CĊ) ·C

)
− (CĊ) · (X ∧C). (4.23)

The first term on the RHS of this equation is zero as (CĊ) ·C = ⟨CĊC⟩1 = ⟨−C2Ċ⟩1 = 0, and
the second term on the RHS is also zero as X lies on C so X ∧C = 0. Thus Ẋ ·C = 0 and Ẋ
therefore anticommutes with C as required.

We are now in a position to expand out (Ẋ ∧X ∧n∞)((X ·C)∧n∞):

(Ẋ ∧X ∧n∞)((X ·C)∧n∞)

=
(
(ẊX)∧n∞

)
((XC)∧n∞)

=
1
4
[(

ẊXn∞ +n∞ẊC
)
(XCn∞ +n∞XC)

]
=

1
4
[
ẊXn∞XCn∞ +n∞ẊXn∞XC

]
. (4.24)

In the above we have used the facts that Ẋ ∧X = ẊX , XC = X ·C and X2 = 0. Note
that the term Xn∞X in the final line of equation 4.24 can be written as 2(X ·n∞)X (from the
standard reflection formula and the fact that C2 = 0). Reversing the final line of equation 4.24
and using the commutation and anticommutation relations discussed, it is easy to show that
the reverse of LT LC is indeed minus itself, implying it has only a bivector part, as required,
meaning the lines are orthogonal. Note that this result relies crucially on the fact that Ẋ and
C anticommute, which is a good indication that Ẋ lies in the right direction.

Given these two orthogonal tangent lines LC and LT , we can construct the plane tangent
to the surface at X by computing the join of the two lines. Or, we can bypass the plane
entirely and compute the surface normal line directly as:

N = ⟨LT LC⟩2 I5. (4.25)

4.6 Calculating the Derivative of the Object Manifold Pro-
jection

To calculate Ċ we must differentiate the projection onto the blade manifold of our interpolated
object with respect to our evolution parameter α . We will continue to work with circles but
note that the process works with the general case where C′α is any pure-grade multivector
which is a function of a scalar parameter α . Let the projection of C′α onto the blade manifold

4.6 Calculating the Derivative of the Object Manifold Projection 71

be given by:
Cα = SC′α

where S is our blade projector. The differential of this with respect to α is given by:

∂Cα

∂α
=

∂S

∂α
C′α +S

∂C′α
∂α

. (4.26)

Thus, any closed form expression for the derivative on the manifold will first require a closed
form for the derivative of the projector ∂S

∂α
. Recall from equation 4.13 that we can write the

projector S as a function of
√

Σ, where Σ =−C′αC̃α , and so

Cα =
⟨
√

Σ⟩0−⟨
√

Σ⟩4(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

C′α ≡ SC′α . (4.27)

Thus to find an expression for ∂S
∂α

we will first need one for ∂
√

Σ

∂α
.

4.6.1 Closed Form Derivative of the Square Root Operation

The closed form for the derivative of the principal square root function can be found by
repeated application of the chain and product rules:

∂ [[Σ]]

∂α
=
⟨ ∂Σ

∂α
⟩0⟨Σ⟩0 + ⟨Σ⟩0⟨ ∂Σ

∂α
⟩0−⟨ ∂Σ

∂α
⟩4⟨Σ⟩4−⟨Σ⟩4⟨ ∂Σ

∂α
⟩4

2[[Σ]]
, (4.28)

where we are using the fact that
〈

∂Σ

∂α

〉
g
=

∂ ⟨Σ⟩g
∂α

.

∂

∂α

(
1√

2
√
⟨Σ⟩0 +[[Σ]]

)
=
−1

2
√

2
(⟨Σ⟩0 +[[Σ]])−

3
2

(
⟨ ∂Σ

∂α
⟩0 +

∂ [[Σ]]

∂α

)
,

∂
√

Σ

∂α
=

(
∂Σ

∂α
+

∂ [[Σ]]

∂α

)(
1√

2
√
⟨Σ⟩0 +[[Σ]]

)

+(Σ+[[Σ]])
∂

∂α

(
1√

2
√
⟨Σ⟩0 +[[Σ]]

)
. (4.29)

Thus the derivative of
√

Σ is a function only of Σ and ∂Σ

∂α
which in turn can be written in

terms of C′α and ∂C′α
∂α

:

Σ =−C′αC̃′α ,
∂Σ

∂α
=−∂C′α

∂α
C̃′α −C′α

˜∂C′α
∂α

.

72 Exploring Novel Surface Representations

4.6.2 Closed Form Derivative of the Projector

With our square root derivative in place we can proceed to finding the derivative of the
projector S . Recall, S is given by:

S =
⟨
√

Σ⟩0−⟨
√

Σ⟩4(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

.

We can again differentiate this with repeated applications of the chain and product rule:

∂

(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)

∂α
=

〈
∂
√

Σ

∂α

〉
0

−

〈
∂
√

Σ

∂α

〉
4

,

∂

([(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

]−1
)

∂α
=[(〈

∂
√

Σ

∂α

〉
0

−

〈
∂
√

Σ

∂α

〉
4

)
√

Σ+
(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)

∂
√

Σ

∂α

]
∗

[
−
(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

]−2

and so finally we have our closed form expression for the projector derivative:

∂S

∂α
=

(〈
∂
√

Σ

∂α

〉
0

−

〈
∂
√

Σ

∂α

〉
4

)[(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

]−1

+
(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
) ∂

([(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

]−1
)

∂α
. (4.30)

Now consider C′α to be an interpolated circle of the form C′α =C′α = αC1 +(1−α)C2. The
derivative of this with respect to α is a constant:

∂C′α
∂α

=C1−C2.

This derivative is the final piece required for equation (4.26), giving us a completely closed
form for ∂Cα

∂α
≡ Ċ.

An important point to note here is that this blade projection derivative is grade-agnostic
and so can be used for objects other than just evolved circles.

4.7 Ray Tracing Evolved Point Pairs 73

Fig. 4.10 Polynomial interpolation through point-pair control objects. From left to right:
linear, quadratic, cubic.

4.7 Ray Tracing Evolved Point Pairs

We will return to the actual ray tracing of circles later (see Figures 4.16, 4.17), but first we
turn our attention to point pairs. Due to the mathematical similarities between circles and
point-pairs in CGA [29], as well as the practical desire to represent ribbon-like surfaces, we
can apply similar ray-tracing methods to surfaces formed from the interpolation of point-pair
bivectors representing line segments. If P1 and P2 are point-pairs which represent a line
segment, we form a surface via:

Pα = S P′α = S (αP1 +(1−α)P2),

where again, S is a scalar plus 4-vector which maps the interpolated bivector onto a 2-blade.
Figure 4.10 gives examples of such surfaces.

4.7.1 Closed Form Solution for the Intersection of a Ray and an Evolved
Point-Pair Surface

To find the intersection point of a ray and these surfaces we again form the meet of a ray L
and the form of the evolved point-pair Pα . The result is a scalar quantity that can be written
as:

L∨Pα ≡ (L∗∧P∗α)I5.

In the case that the ray and the line that passes through both of the points in the point-pair in
the surface (also known as the carrier line) intersect, this will give an answer of zero:

L∨Pα = 0.

74 Exploring Novel Surface Representations

As with the evolved circle surfaces we will attempt to construct this as a simple polynomial
in α . We start with:

L∨ [S P′α] = 0.

Expressing S in terms of Σ where as before, Σ =−P′α P̃′α , gives

L∨

 ⟨
√

Σ⟩0−⟨
√

Σ⟩4(
⟨
√

Σ⟩0−⟨
√

Σ⟩4
)√

Σ

P′α

= 0.

As before, the denominator cannot usefully be zero, giving:

L∨ [⟨
√

Σ⟩0P′α]−L∨ [⟨
√

Σ⟩4P′α] = 0,

L∨

[〈
Σ+[[Σ]]√

2
√
⟨Σ⟩0 +[[Σ]]

〉
0

P′α

]
−L∨

[〈
Σ+[[Σ]]√

2
√
⟨Σ⟩0 +[[Σ]]

〉
4

P′α

]
= 0,

(
L∨ [⟨Σ⟩0P′α]+ [[Σ]]L∨P′α −L∨

[
⟨Σ⟩4P′α

])2
= 0.

as again, the denominator is not zero.We now take the term containing [[Σ]] (a scalar), to the
RHS;

L∨ [⟨Σ⟩0P′α]−L∨
[
⟨Σ⟩4P′α

]
=−[[Σ]]L∨P′α .

Squaring then gives us:

(L∨ [⟨Σ⟩0P′α]−L∨
[
⟨Σ⟩4P′α

]
)2 = [[Σ]]2(L∨P′α)

2.

allowing us to form a simple scalar polynomial in α (we can see that this produces a scalar
equation since ⟨Σ⟩4P′α has only bivector parts):

(L∨ [⟨Σ⟩0P′α]−L∨
[
⟨Σ⟩4P′α

]
)2− [[Σ]]2(L∨P′α)

2 = 0, (4.31)

which can again be solved with a fast numerical polynomial solver.
This intersection equation for linearly interpolated point pairs is of order 6, implying

there are up to 6 potential hitting points. Again the same process can be used to filter the
roots as was done for the roots of the circle intersection equation.

4.7.2 Bounding Sphere and Normal Calculation

We saw earlier that the meet will be zero if the ray hits anywhere along the carrier line of the
point-pair LC = P∧n∞. Assuming the carrier line and ray do meet, the point of intersection

4.7 Ray Tracing Evolved Point Pairs 75

Fig. 4.11 Ray tracing evolved point-pairs. Left: The scene to be rendered, in blue is a
representation of the point-pair surface to be rendered, the camera frustum is shown in
black, the camera axis is shown in red. Right: The resultant rendered surface of interpolated
point-pairs.

can be extracted via the method outlined in the last section of Chapter 3 and published in
[48]. Given that the carrier line of Pα (for some α) and the ray intersect at a point X , we can
then check if the intersection point is within the bounding sphere S = P1∧P2 of the surface
by ensuring:

S∗ ·X = [(P1∧P2)I5] ·X > 0.

Since the endpoints of all interpolated point-pairs will lie on the surface of S (see [48]), the
above condition ensures there is an intersection with the line segment and not just the carrier
line of the point-pair. To find the normal to the point-pair surface we can simply use exactly
the same argument, and in fact the same code, as we did before for the evolved circles case
but this time extracting LC as:

LC = P∧n∞.

Figure 4.11 shows an example of rendering a surface composed of interpolated point-pairs.

4.7.3 Special Cases of Evolved Point-Pairs

A special case of the evolved point-pairs occurs when they are co-planar and form chords of
a circle, Figure 4.12 shows two examples of this. As proved in [48] this special case results
in the 4-vector part of the projector becoming zero implying the interpolation requires no
re-projection back to the object manifold, i.e.,

Pα = αP1 +(1−α)P2.

76 Exploring Novel Surface Representations

Fig. 4.12 Two examples of point-pair interpolations for which all intermediary objects are
blades without requiring projection to the object manifold.

In this case the intersection of the carrier line with the ray can be found by looking for a
point at which:

Pα ∨L = αP1∨L+(1−α)P2∨L = 0.

Re-arranging gives an expression for α:

α =
P2∨L

P2∨L−P1∨L
.

If the α derived from the above expression is between 0 and 1 then there is an intersection of
the ray with the carrier line.

The disappearing 4-vector part of the projector, which is proportional to P1∧P2, allows the
ray-tracer to detect these cases and thus reduces the computational expense of a ray-surface
intersection considerably.

4.7.4 Triangular Facets from Evolved Point-Pairs

The intersection of co-circular point-pairs also allows us to examine the intersection of rays
with triangular facets. Consider a ray L and a set of three points A, B, C which together form
a triangular facet. First we will form a set of normalised point pairs:

P1 =
A∧C
|A∧C|

, P2 =
A∧B
|A∧B|

, P3 =
C∧B
|C∧B|

.

4.8 Bézier Curves and Hermite Splines through Geometric Primitives 77

Fig. 4.13 Ray tracing a triangular facet.

We can then check if the ray intersects the facet by computing two scalar quantities

α =
P2∨L

P2∨L−P1∨L
, β =

P3∨L
P3∨L−P2∨L

.

If both α and β are between 0 and 1 then the ray hits the facet. Figure 4.13 shows an example
of rendering a triangular facet using this technique. It is of course possible to combine
together multiple triangular facets and thus make meshes. Note that the line-facet intersection
problem is not new in CGA, an alternative solution is already known via a reciprocal frame
construction equivalent to barycentric coordinates and is well demonstrated in the raytracers
of [76, 29].

4.8 Bézier Curves and Hermite Splines through Geometric
Primitives

So far we have restricted our mathematics to linear interpolation of objects but have hinted
that higher order interpolations are possible. A commonly used family of higher order
interpolating curves are the Bézier curves [6], which in the cubic case and with specific first
order endpoint conditions are known as Hermite curves.

4.8.1 Linear Interpolation as a Linear Bézier Curve

The simplest form of Bézier curve is simply a linear interpolation between two vectors. If
we replace the vectors with k-blades and couple with the projection to the blade manifold

78 Exploring Novel Surface Representations

we have the exact same linear interpolation, although this time with α going in the other
direction. Adopting a notation of C0 as the first object and C1 as the second:

C′α = (1−α)C0 +αC1, Cα = SC′α .

In sections 4.5.2 and 4.6, our analysis to extract surface normals was based on having an
expression for the derivative of the pure grade multivector as a function of α . For the case of
the linear interpolation the solution is constant:

∂C′α
∂α

=C1−C0.

4.8.2 Quadratic Bézier Curve

With three multivectors we can specify a quadratic function of α:

C′α = (1−α)2C0 +2(1−α)αC1 +α
2C2.

This is known as a quadratic Bézier curve. Again we can take derivatives:

∂C′α
∂α

= 2(1−α)(C1−C0)+2α(C2−C1).

4.8.3 Cubic Bézier Curves

With four control multivectors we get the the most commonly used form of Bézier curve, the
cubic Bézier curve:

C′α = (1−α)3C0 +3(1−α)2
αC1 +3(1−α)α2C2 +α

3C3.

Again we can take derivatives allowing us to extract surface normals:

∂C′α
∂α

= 3(1−α)2(C1−C0)+6(1−α)α(C2−C1)+3α
2(C3−C2).

Figure 4.14 shows examples of orders 1,2 and 3 Bézier interpolation through circles, along
with the control objects used to generate the surface.

4.8 Bézier Curves and Hermite Splines through Geometric Primitives 79

(a) Order 1 (b) Order 2 (c) Order 3

Fig. 4.14 Projected multivector Bézier curves of progressively higher order. The surfaces are
shown in grey while the control objects are shown in red.

4.8.4 Nth Order Bézier Curve

More generally we can say that an Nth order multivector Bézier curve is of the form

C′α =
N

∑
i=0

bi,NCi,

where

bi,N =

(N

i

)
α i(1−α)N−i, 0≤ i≤ N,

0, otherwise,

are known as the Bernstein polynomials. The derivative of our Nth order Bézier curve is:

∂C′α
∂α

=
N

∑
i=0

∂bi,N

∂α
Ci where

∂bi,N

∂α
= N(bi−1,N−1−bi,N−1).

If we re-arrange our coefficients the Bézier curve derivative can also be written in the form:

∂C′α
∂α

= N
N−1

∑
i=0

bi,N−1(Ci+1−Ci).

4.8.5 Rational Bézier Curves

A rational Bézier curve adds weights wi to the polynomials allowing them to represent a
broader class of curves:

C′α =
∑

N
i=0 bi,NCiwi

∑
N
i=0 bi,Nwi

.

80 Exploring Novel Surface Representations

Again, a closed form for their derivatives with respect to α can be calculated:

∂C′α
∂α

=
1

[∑N
i=0 bi,Nwi]2

([
N

∑
i=0

∂bi,N

∂α
Ciwi

][
N

∑
i=0

bi,Nwi

]

−

[
N

∑
i=0

bi,NCiwi

][
N

∑
i=0

∂bi,N

∂α
wi

])
. (4.32)

Thus we can additionally represent projected multivector rational Bézier curves and calculate
analytic normals to the evolved surfaces formed.

4.8.6 Hermite Cubic Curves and Splines

Hermite cubic curves are another common form of interpolating curve. They are defined by
control points, Ci, (where we use the notation C for points, but will see shortly that these
can be replaced by objects) and associated tangent vectors, Vi, at each end of the curve, for
α ∈ [0,1]:

C′α = (2α
3−3α

2 +1)C0 +(α3−2α
2 +α)V0 +(−2α

3 +3α
2)C1 +(α3−α

2)V1.

The derivative of the curve is:

∂C′α
∂α

= (6α
2−6α)C0 +(3α

2−4α +1)V0 +(−6α
2 +6α)C1 +(3α

2−2α)V1.

Cubic Hermite curves can be converted to cubic Bezier curves and vice-versa. As with Bezier
curves, putting multivectors and multivector derivatives instead of the control points and
tangents will give us a multivector valued curve.

A very common use of Hermite curves is in the construction of Hermite splines; these
are piece-wise constructions in which multiple Hermite curves are placed end to end, sharing
tangent vectors and control points at each endpoint. By constructing a curve in this way, a C1
continuous piece-wise curve is designed that passes through the control points exactly.

When moving the spline generation process to the multivector domain we must check
whether the blade projection introduces problems with C1 continuity on the manifold. To
check C1 continuity we need to evaluate the curve derivative either side of a junction between
curves in the spline. Consider the form of the derivative:

∂Cα

∂α
=

∂S

∂α
C′α +S

∂C′α
∂α

. (4.33)

4.9 Examples of Ray Tracing Simple Objects and Evolved Surfaces 81

Let us now evaluate this at the endpoint of the nth curve in a piece-wise spline where
α = 1 and of curve (n+1) where α = 0. First we note that on both curves at these points,
S = 1 because the curve passes through a blade control object which requires no projection.
Additionally we see that by definition of the Hermite spline at that point, the derivative in
pure-grade space is shared across both curves as is the control point:

∂C′α
∂α

=Vn,n+1, C′α =Cn,n+1,

where Vn,n+1 and Cn,n+1 are the derivative (or ‘tangent’) and control objects respectively of
the curve that are shared between segments n and n+1.

Thus for the derivative to evaluate to the same on either side of the boundary, we only
need to check that ∂S

∂α
is the same either side of the boundary. Considering the equations in

section 4.6.1 we can see that ∂S
∂α

is a function only of C′ and ∂C′
∂α

which are both constant
across the junction. Thus the curve is C1 continuous on the manifold as required. With
assurances that the spline is continuous across the boundaries we are free to chose any means
of generating tangents in the pure-grade space that we like.

One such mechanism for generating tangents for Hermite splines comes from Kochanek
and Bartels [72]. The Kochanek–Bartels (KB) spline is an interpolating spline with three
scalar design parameters t,b,c known as tension, bias and continuity respectively. For given
control objects Ci,Ci+1 the corresponding tangents Vi,Vi+1 can be calculated using the control
objects in the spline Ci−1 and Ci+2 which lie previous to, and after, the curve in the order of
the spline:

Vi =
(1− t)(1+b)(1+ c)

2
(Ci−Ci−1)+

(1− t)(1−b)(1− c)
2

(Ci+1−Ci),

Vi+1 =
(1− t)(1+b)(1− c)

2
(Ci+1−Ci)+

(1− t)(1−b)(1+ c)
2

(Ci+2−Ci+1).

Setting all three scalar parameters to a value of 0 produces the commonly used Catmull–Rom
spline [15]. Figure 4.15 shows an example of a KB spline of multivector geometric primitives.

4.9 Examples of Ray Tracing Simple Objects and Evolved
Surfaces

Putting together the material from previous sections we can now raytrace both simple objects
and evolved surfaces. Figure 4.3 shows an example of simple objects, spheres, planes and
disks being rendered. Figure 4.16 shows an example of an evolved surface being rendered on

82 Exploring Novel Surface Representations

Fig. 4.15 A Kochanek–Bartels spline of evolved circles meshed, textured, and rendered with
smooth shading.

Fig. 4.16 Left: A scene composed of only an evolved surface in blue and a camera. Right:
The rendering of the scene from the camera.

4.10 Meshing Evolved Surfaces 83

Fig. 4.17 Left: A scene composed of a ground plane in cyan, an evolved surface in blue and
a sphere in red. Right: The rendering of the scene from the camera.

its own. The class of surfaces that are able to be generated with the interpolation of circles is
large and Figure 4.17 shows a more unusual surface being rendered in a scene with a sphere
and a plane.

4.10 Meshing Evolved Surfaces

Most graphics pipelines in modern computers use triangular meshes with some form of
interpolation of vertex normals for approximating the look of curved surfaces. In light of this
it is clearly desirable to be able to convert from an explicitly parameterised evolved surface
to a mesh approximation of that surface.

To produce a mesh approximation we first need to generate a set of points that are in some
sense evenly spaced and lie on the surface itself. To do this we will begin by producing a set
of evenly spaced points on the first object C1 and then transform these points along a small
step in α to give a second set of points. Continuing in this way we can cover the surface
entirely. An appropriate transformation for this task needs to preserve the relative spacing of
the points on the objects in order to produce a good quality mesh. TRS (Translation Rotation
Scaling) rotors have this property and can map circles to circles, spheres to spheres and point
pairs to point pairs (these quantities are sometimes known as rounds). A TRS rotor that takes
one object C1, to another, C2, can be calculated with the following process:

• Calculate T1 and T2 the translation rotors that bring C1 and C2 respectively to the origin

84 Exploring Novel Surface Representations

• Apply T1 and T2 to C1 and C2 respectively, bringing them to the origin and producing
C′1 and C′2

• Calculate the rotation rotor R12 between the blades C′1∧n∞ and C′2∧n∞ (if C1 and C2

are spheres then we do not need a rotation rotor so set R12 = 1)

• Calculate the difference in scale between the objects by extracting their relative sizes

• Use the scale to generate a dilation rotor D12 that scales C′1 to the same size as C′2

• Compose the final TRS rotor Z12 that takes C1 to C2 as:

Z12 = T̃2D12R12T1.

Armed with our transformation, we now simply need to generate a set of starting points
on the first object. First consider the case of evolved circles. We can produce a set of N
evenly spaced points on the unit circle in the e1, e2 plane by N successive rotations about the
origin of a point X lying initially at X0 = F(e1) yielding Xn for n ∈ 0, . . . ,N i.e., for a fixed
rotor Rθ :

Xn = (Rθ)
nX0(R̃θ)

n

where θ is chosen so that N +1 uniformly spaced points cover the whole circle. With the
TRS rotor Z01 that maps from the unit circle at the origin to the first object C1 it is possible
to transform our points to the first object:

Un1 = Z01XnZ̃01.

Our process then becomes one of stepping sequentially through α from 1 to 0 in small
increments of δα and transforming our points along the way. We will use Zα to refer to the
TRS rotor that maps Cα to Cα−δα and so can write the nth point at α as:

Un(α−δα) = ZαUnα Z̃α .

By doing this we have effectively constructed a mapping from a coordinate system in the 2D
plane of α and n to the surface manifold. This is useful as it lets us generate the mesh in the
2D plane of α and n and map the vertex positions directly to 3D.

Modern graphics engines allow users to write shaders that interpolate vertex normals
in smart ways, giving the illusion of curved surfaces over flat facets. In our ray tracing
experiments we have already identified how to calculate the normal to the evolved surface
at any point on the surface provided that α is known at the point. The vertex normals are

4.10 Meshing Evolved Surfaces 85

Fig. 4.18 A linear interpolation surface of evolved circles meshed and rendered with flat
shading.

86 Exploring Novel Surface Representations

calculated using the formulae in the above sections. While Figure 4.18 shows a surface of
evolved circles meshed and rendered using flat shading with ganja.js [23], Figure 4.15 shows
a tubular KB spline surface, meshed, textured, and shaded with a smooth vertex normal
interpolation scheme.

4.11 Summary and Conclusions

In this chapter we have outlined the basic workings of a CGA ray tracer that can render
geometric primitives as well as more advanced interpolated surfaces defined by two circles
or point-pairs and an evolution parameter, α . Integral to ray-tracing these evolved surfaces is
the derivation of analytic intersection points and normal vectors.

Chapter 5

REFORM: Rotor Estimation From
Object Resampling and Matching

We are stuck with technology when what we really want is just

stuff that works.
Douglas Adams, The Salmon of Doubt

Abstract

In this chapter we tackle the problem of correspondence and rotor estimation between models
composed of geometric primitives of different types. We frame this problem as searching for
the rotor that takes a query model to a reference model. The situations that we consider are
those in which our query model: contains additional primitives not present in the reference; is
missing primitives that are present in the reference. We will also look at cases in which there
are a large number of primitives per model. These are all common issues facing any SLAM-
type (Simultaneous Localisation And Mapping) systems. To overcome these problems
we introduce an inter-object rotor magnitude-based matching function and a subsampled
iterative rotor estimation and matching algorithm. We title the finished algorithm: Rotor
Estimation From Object Resampling and Matching - REFORM. REFORM builds on ideas
from the RANSAC (RAndom SAmple Consensus) [38] and ICP (Iterative Closest Point)
[5][88] algorithms and extends these to multivector correspondence. It is easily parallelisable
and designed for good convergence performance with models of real objects.

88 REFORM

5.1 Introduction

A fundamental problem in computer vision is the correspondence problem. How do we match
features from one image to another? This correspondence problem also appears when dealing
with 3D data; given a reference model of an object and a query model of the same object
how do we match objects, identify discrepancies and extract the transformation between the
models? Our reference might be, for example, a CAD model, and our query model might
represent the output of fitting primitives to LIDAR data or structure-from-motion point clouds.
Many authors have tackled the problem of rotor estimation between groups of pre-matched
geometric objects [35] [98][95][24] and others have applied conformal geometric algebra to
3D registration of point and sphere clouds [71][4]. In this chapter we tackle the problem of
registration and rotor estimation for primitives of any grade.

The objects we work with here will be CGA objects unless explicitly stated otherwise.
We will use the standard extension of the 3D geometric algebra, where our 5D CGA space
is made up of the standard spatial basis vectors {ei} i = 1,2,3, plus two additional basis
vectors, e and ē with signatures, e2 = 1, ē2 =−1. Two null vectors can therefore be defined
as: n∞ = e+ ē and n0 =

e−ē
2 . The mapping of a 3D vector x to its conformal representation

X is given by X = F(x) = 1
2(x

2n∞ +2x−2n0).

5.2 Proximity-based matching

Our first attempt at matching models made from a collection of geometric objects comes
simply from considering their locality in space. For cases in which our query model is a
small displacement (where displacement here will refer to rotation and translation) from the
reference model, we would expect that simply assigning each object in the query model to its
closest object in the reference model would give us a good number of correct matches.

Several authors have proposed cost functions between objects [98] [95], and while
many of these are extremely effective for extracting motors between circles and other round
elements, they tend to fail to extract the transformation between parallel lines and planes. To
counteract this problem we choose the cost function described in [35] (the properties of this
cost function are further explored in [35]).

Consider first two arbitrary objects in 3D space represented as Oi and O j in our conformal
model. As in [75] we will extract the rotor Ri j that takes one object Oi to another O j. Note
that the objects will have an orientation (sign), and the rotor extraction will be orientation
dependent. Once we have our rotor R between our conformal objects, the next step is to use

5.2 Proximity-based matching 89

Fig. 5.1 Black: 22 lines extracted from a CAD model of a table. Red: A transformation of
the original model.

this rotor to define a cost C as a function of this rotor:

C(R) = ⟨(R−1)(R̃−1)⟩0 + ⟨(R · e)(R · e)˜⟩0 (5.1)

where ⟨X⟩r indicates the r-grade part of X . Equipped with this idea of closeness of objects,
for a given i, a query object Oi is assigned to each of the reference objects O j (i.e. this is
done for all j), assuming the model and query sets are spatially close. For each object pair
we form the rotor, Ri j that takes the query object to the reference object. The minimum cost
assignment is then taken as the correct match, Mi, for that query object

Mi = argmin
j

[C(Ri j)]

Repeating this for all i, we define the total cost of this specific matching by summing the
costs of each object-to-object match

Ctotal = ∑
i

C(RiMi)

90 REFORM

Fig. 5.2 Using a direct proximity match between objects in the example scene, the green
lines are correctly matched, the black lines are incorrectly matched. In this case the method
produces 11 out of 22 correct matches.

5.3 Finding the rotor between two sets of matched objects 91

The lower this cost, the better the models are matched. Figure 5.1 shows an example scene
constructed of two line-based models extracted from a CAD drawing, one model is in black
and the other in red, the vertices of the models are also shown but are not used for matching.
Figure 5.2 shows the result of performing proximity matching on the models, the lines in
green are correctly matched and those in black are incorrectly matched. In this scene 11 of
22 lines are correctly matched by proximity matching.

5.3 Finding the rotor between two sets of matched objects

Given a set of matches for all object-pairs (under the assumption that the matching is correct)
we need a method for finding the rotor between the two sets of objects. One technique
for doing this is to optimise over our possible rotors, via minimisation of a cost function.
Typically in CGA we parameterise and optimise over rotors in bivector space. Using the
above cost metric it is shown in [35] that given correct matching we are able to perform
non-linear convex optimisation and produce the correct rotation and displacement rotor. The
downside of estimated gradient non-linear convex optimisation methods is that they typically
require many cost function evaluations to reach the minimum, and when we have large
numbers of objects in each model the optimisation can be very slow.

Here we propose an alternative algorithm, 1, based on directly using the rotors that we
calculate between matched objects as part of the proximity matching procedure:

92 REFORM

Algorithm 1: Direct rotor estimation algorithm
Result: Re

Re = 1 // The running estimate of the rotor;
for j← 0 to max iterations do

Rs = 1 // Keep track of the rotor as we iterate over all the objects;
for m← 0 to N matches do

Um = ReQmR̃e // Transform query object Qm by the current rotor Re;
Rm = rotor between objects(Um,Om) // R from transformed object Um to

matched ref object Om;
Rr =

√
Rm // Take the square root of the match rotor;

Re = RrRe // Update the running estimate to use Rr;
Rs = RrRs // Update the rotor for this iteration;

end
if Rs = 1 then

return Re // Terminate when the full loop over the objects comes back on
itself;

end
end

This algorithm does not require the computing of an explicit cost function, it is heuristic
driven and has not been proven to converge. In practice however we have found it to perform
well. In the case of a fully correct matching, the rotor that is found, for both the non-linear
optimisation algorithm and this direct algorithm, is indeed the rotor that takes our query
model to our reference model. In the case of a partially incorrect initial matching, the rotor
that is produced typically takes the query model closer to the reference model but does not
produce the true rotor as shown in Figures 5.3 and 5.4.

5.4 Iterative matching and rotor estimation

Armed with rotor estimation techniques for correctly matched reference and query models
we will move to more difficult situations. Consider the general case where the query and
reference models are not in close proximity. In this situation we first make an initial guess at
the object matches and estimate the rotor between the query and reference models using the
methods described in the previous section. If our initial matching was not completely correct
we will not estimate the correct rotor between the objects, the resultant rotor will have some
error but will likely be relatively close to the true rotor. If we transform our query model by
the estimated rotor we can use proximity matching between the transformed query model

5.4 Iterative matching and rotor estimation 93

Fig. 5.3 The blue model is the estimated transformation from the set of red lines to the
set of black lines (see Figure 5.1) given the starting proximity match using the non linear
optimisation method. Given an initial proximity matching (see Figure 5.2), the rotor found
by non-linear optimisation still puts the models in close proximity even if the initial matching
is not perfect.

94 REFORM

Fig. 5.4 As in Figure 5.3, the blue model is the estimated transformation from the red to
the black given the starting proximity match, in this case using the direct rotor estimation
algorithm. The direct rotor estimation algorithm in practice produces rotors of similar quality
to the non-linear optimiser.

5.5 Incorporating sampling 95

and the reference to get a better set of object matches. The process is then repeated so that
the number of incorrect matches decreases with each iteration and the process converges.
The iterative algorithm is summarised in the following:

1. Each object in the query model is given a match in the reference model (there are a
number of ways of making this initial guess)

2. Calculate the rotor between the models assuming the current matches are correct, this
can be done by running an optimisation algorithm to completion or by using the direct
method mentioned in the previous section.

3. Transform the query model by applying the rotor calculated in the previous step

4. Each object in the transformed query model is compared to each object in the reference
model, the match with the minimum cost according to our chosen cost function is
accepted

5. If there is no change in the matches terminate the algorithm otherwise go back to step
(2)

This algorithm correctly handles partially incorrect initial matching between models, and
iterates towards the answer in relatively few steps. It is also deterministic, each step is a
function only of the current state and it has fixed termination criteria that clearly indicate
when it has completed. In its current state this algorithm is an extension of the well known
Iterative Closest Point (ICP) algorithm [5][88] routinely used for point cloud registration. As
with the ICP algorithm, a significant problem arises when we consider cases in which large
fractions of the initial matches are incorrect, resulting in convergence to an incorrect set of
correspondences. With our geometric algorithm we additionally see local minima arise when
models contain many parallel lines or planes and computationally we run into trouble when
models contain a very large number of geometric objects. In these cases the algorithm may
fail to converge to the true rotor and instead become stuck in a local minimum even though
some matches are correct. Real manufactured objects or buildings typically contain many
parallel faces and lines and as such we need a way to overcome these limitations. Figure 5.5
shows an example of the previously studied scene stuck in a local minima, in this case there
are 17 of 22 lines correctly matched but the algorithm will not progress further.

5.5 Incorporating sampling

To counteract the local minima issue, we modify our procedure to incorporate sampling in a
RANSAC-like [38] algorithm. This particular approach is chosen as it is readily adapted to

96 REFORM

Fig. 5.5 As our model contains a lot of symmetry the iterative algorithm is prone to getting
stuck in local minima. As in Figure 5.1 the black model is our reference and the blue is our
estimate, the red lines are not shown for clarity. Here the blue model is at the final output of
the iterative matching algorithm. 17 of 22 matches are correct but the algorithm is stuck in a
local minima.

5.5 Incorporating sampling 97

parallel processing and is well suited to handling large numbers of incorrect matches. After
each matching stage in the previous algorithm we randomly and uniformly sample m lots of k
matches. Each of these m match sets then propagates through the rotor estimation algorithm
and each produces a candidate rotor for the model matching and a cost associated with that
rotor for these k matches. The rotor produced by the sample with the minimum cost is then
chosen and used to transform the entire query model. This repeats for a fixed number of
iterations or until some cost threshold is reached.

The full REFORM algorithm is now summarised as follows:

1. Each object in the query model is given a match in the reference model (there are a
number of ways of making this initial guess)

2. Given our matches, randomly select multiple sample subsets

3. For a given sampled subset calculate the rotor that leads to minimum total cost between
the subset objects as in equation (5.1)

4. Accept the rotor from the sample that gives the minimum total cost between the subset
objects

5. Update our query model position by applying the estimated rotor

6. Each object in the query model is compared to each object in the reference model, the
match with the minimum cost is accepted

7. Check termination criteria, go back to step 2.

The disadvantage of moving to a sampling-based model is that we no longer have fixed
termination criteria – just because the matches have not changed over multiple sampling and
optimisation steps, does not mean they will not change as a result of the next one. On the
other hand, the rotor estimation and cost calculation for each sample is independent of every
other sample allowing for easy parallelisation. The subsampling also allows the algorithm
to jump out of local minima by sampling correct matches whose effect would normally be
swamped by the mass of incorrect matches. A CUDA implementation of the algorithm has
been written, leveraging the massive parallelisation capability afforded by modern graphics
cards and is incorporated in the clifford python package [52].

98 REFORM

Fig. 5.6 Sets of synthetic random lines and planes in red along with their transformation in
black to be matched. REFORM handles both in the same framework and correctly extracts
the rotor between them.

5.6 Matching scenes of mixed geometric primitives 99

5.6 Matching scenes of mixed geometric primitives

3D models of objects are typically constructed from collections of geometric objects, planes,
lines and points. While traditional matching techniques typically use points from meshes [41]
or points derived from the intersection of planes/lines [8], REFORM allows us to incorporate
multiple types of 3D object together into the same matching and rotation/translation estima-
tion framework, Figure 5.6 shows an example of two matching synthetic models composed of
both lines and planes, in this example REFORM handles both types of object transparently.

5.7 Conclusions

In this chapter we have presented an algorithm for registering models composed of geo-
metric primitives. This algorithm extends the range of traditional matching and registration
algorithms from point cloud only techniques to incorporate higher grade geometric objects.
The solution is available in the clifford [52] python package with both CPU and GPU
implementations.

Part II
Kinematics, Dynamics and Robotics

In this Part of the Thesis we develop techniques that relate to robotics. Geometric Algebra
has found relatively widespread use in the analysis of robots. GA simplifies the intersection
of geometric shapes, often used in forward and inverse kinematics, and GA provides a neat
framework for the manipulation of Lie algebras and groups, again often useful in forward and
inverse kinematics as well as in control problems. Here we specifically look at the embedding
of screw theory into Geometric Algebra and how this embedding can be used for dynamics
and multi-body kinematics.

Chapter 6

Screw Theory in Geometric Algebra for
Constrained Rigid Body Dynamics

We may always depend on it that algebra, which cannot be

translated into good English and sound common sense, is bad

algebra.
William Kingdon Clifford

Abstract

Screw Theory and Geometric Algebra (GA) are mathematical frameworks that have found
wide use in the analysis of robotic mechanisms. Here we consider an embedding of screw
theoretic wrenches and twists into the motor bivectors of two common GAs, the Plane-
based (also known as Projective) and Conformal Geometric Algebras. We start with statics,
considering the representations of forces and moments and how the products of GA map
to the products of Screw Theory. Moving on from statics we construct an inertia tensor
equivalent based on the concept of the principal screws of inertia and show how to transform
this inertia tensor between frames of reference. We then look at the problem of geometrically
constrained dynamics in two different ways, first via the familiar concept of virtual work,
and secondly via a novel idea of multivector pinning between frames. Finally we consider
the problem of integrating screw motions directly in the motor bivector space, describing
kinematic equations for several alternative se(3) Lie algebra to Lie group mappings. Our goal
in this chapter is to kill two birds with one stone: explicitly work through how Screw Theory
embeds into commonly used GAs and use Screw Theoretic ideas to show the similarity

104 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

between the various approaches to statics and dynamics in GA. Along the way we will focus
heavily on the geometry driving the problems we encounter, with the hope that this will shed
light both on both GA and Screw Theory.

6.1 Introduction

6.1.1 Screw Theory

Screw theory was originally developed by Sir Robert Stawell Ball (1840-1913) and described
in his seminal text ‘A Treatise on the Theory of Screws’ [2]. Screw Theory has found wide
adoption in the study of 3D mechanisms as it allows a simple, unified treatment of both the
rotational and translational motion of rigid bodies. The Screw Theory literature draws on
multiple sources of mathematics but Lie theory and Projective Geometry feature heavily.
Modern Screw Theory appears in several different forms and is referred to by various different
names by different authors. From the ‘spatial vector algebra’ of Roy Featherstone [36, 37] to
the ‘Linear Line Complexes’ of Helmutt Pottmann [86] the diversity of terminology reflects
the diversity of fields in which Screw Theory has found applications and mathematical
foundations. This chapter is an attempt to articulate a particularly elegant embedding of
Screw Theory into the coordinate free language of Geometric Algebra (GA) and how this
novel embedding might allow us to push the boundaries of Screw Theory in new directions.

6.1.2 CGA

Conformal Geometric Algebra (CGA) is a real Clifford algebra with signature Cl(4,1,0). It
is very popular for its embedding of conformal transformations (and so also the Euclidean
transformations) as well as its blade representations of many geometric primitives. CGA is
especially well suited for robotics as the direct circle and sphere intersections appear in many
forward and inverse kinematic problems while the motions involved are typically Euclidean
[50, 51]. CGA was first suggested by Hestenes [56] and indeed the same author made the
first steps in uniting it with Screw Theory [54, 55]. CGA has since been applied to a huge
variety of problems, for more information about this algebra the reader is directed to the
excellent book of Dorst, Fontijne and Mann [29].

6.1.3 PGA

While CGA has been a very successful idea it is by no means the most computationally
efficient way to embed rigid body dynamics into GA. In many applications a practitioner

6.2 Forces, moments and static equilibrium 105

is willing to lose some of the expressiveness and mathematical niceties of CGA to gain an
algebra with fewer elements that nonetheless does what they desire, and crucially, does it
computationally faster. The Plane-based (or Projective) Geometric Algebra (PGA) aims
to strike a balance between efficiency and expressiveness. With a signature of Cl(3,0,1) it
contains the so called ‘flat’ elements of CGA, flat points, direction bivectors, lines, planes
and the rigid body rotors, but loses point-pairs, circles, spheres, dilation and inversion rotors
as first class citizens of the algebra. The use of the degenerate metric also necessitates the use
of an alternate dual map rather than a simple multiplication by the pseudoscalar, in practice
this dualisation operation can be implemented by the right complement extended over the
canonical basis vectors by linearity. For more information on PGA the reader is directed
towards the 2019 SIGGRAPH course by Gunn and De Keninck [46, 45] and Leo Dorst’s ‘A
Guided Tour to the Plane-Based Geometric Algebra PGA’ [28].

6.2 Forces, moments and static equilibrium

While this chapter is ostensibly about dynamics we will first cover force representations and
static equilibrium to make sure we are developing sensible mathematics before we put things
in motion.

For a rigid body to be in static equilibrium certain conditions have to be met. Specifically,
there can be no net moment (torque) and no net force acting on it.

6.2.1 What is a force?

We will now do a quick survey of the different force representations, and in doing so, think
about what an effective force representation requires.

3D vector representations

In many approaches to mechanics, forces are formalised as a simple 3D vector aligned with
the direction of the force and a magnitude equal to the intensity of the force. In order to
calculate the resultant force on a rigid body acted upon by many incident forces we take
the vector sum of the force vectors acting on the body. To represent a moment in the same
formalism we use a 3D vector parallel to the axis of the moment with magnitude equal to its
intensity and with the convention that a positive turning force acts counter-clockwise about
this axis. To calculate the moment of a force about a specific point on the body we need
to combine the incident force with its incident position. If we label the force vector f , its
incident point a and the point about which we aim to calculate the moment as p then we can

106 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

calculate the moment b with the cross product:

b = (a− p)× f .

6D representations

The 3D vector representation is efficient and easy to understand, however it does not encode
all the information that exists in our idea of a force. Specifically, it does not inherently
include any localisation information about the force. When we want to calculate the moment
due to the force about a specific point we need to include the additional information of a point
on the line of action of the force. Therefore to be able to use this representation effectively
we actually require two 3D vectors, one the 3D force vector f and one determining a point
a through which the force acts. We can stack these two 3D vectors on top of each other to
make a 6D vector which we will call F ′:

F ′ =

[
f
a

]
.

This object F ′ now contains all the information required to use the force in applications. It is
however not unique. We could choose multiple values of a all of which lie on the line and they
would all give different 6D representations of the force while still fundamentally behaving
the same way physically. To solve this problem we need to instead use a representation of
the force that is unique. If we change our representation to:

F =

[
f

a× f

]

then we get such a formulation, as all points on the line of action of the force will have the
same result for a× f . This 6D representation is known as the Plücker coordinates of the line
[86].

In contrast to a force, a moment is not localised to a specific point or line in the world, in
the terminology of physics and engineering this type of non-localised vector is known as a
free vector. While respecting their non-localised nature we would like to be able to put the
3D moments in the same 6D box as forces to be able to keep the representations consistent
and maybe provide some meaningful operations on them. When putting our 3D moment
vector into the 6D box we are left with several different options. One option would be to put
the moment vector in the top 3 positions of the 6D vector, such that they align with the f

6.2 Forces, moments and static equilibrium 107

component of the force, or maybe we should put them in the lower 3 to make them align with
the a× f part of the force representation.

Initially, which choice to make seems non-obvious. To help us gain some insight we
consider the problem of two anti-parallel co-planar forces of equal magnitude acting on a
rigid body. First, label the forces themselves:

F1 =

[
f

a1× f

]
, F2 =

[
− f

a2×− f

]
.

In this situation, as the forces are in opposite directions and of equal magnitude, the total
resultant force on the body is f − f = 0. But what about the total moment bt of the forces
about a point p on the body?

bt = b1 +b2 = (a1− p)× f +(a2− p)×− f .

As the cross product is distributive we can expand this out and rearrange it giving:

bt = a1× f −a2× f − p× f + p× f ,

bt = (a1−a2)× f .

This is an interesting result. The moment is independent of the position p on the rigid body
that we have taken moments about and is equal simply to the sum of the second half of our
6D force representation. This concept of two anti-parallel forces giving rise to a pure moment
is the basis of the term couple or force couple from mechanical engineering. If we were to
write an external moment in the form:

Be =

[
0
be

]
.

We could exploit the linear independence of the top and bottom of the 6D vector to state our
static equilibrium condition as:

∑
i

Fi +∑
i

Bi = 0.

This is a neat result and gives us hope that continuing down the route of 6D representations
will lead us to other interesting things.

In fact continuing down this route leads us to the concept of constructing an algebra over
these 6D objects, known as the algebra of screws and more generally into the territory of

108 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

the field known as Screw Theory. The basic element of such a ‘screw algebra’ is a 6D vector
made up of the 6D representation of a force line and the 6D representation of a moment with
axis parallel to that force line. Or, more formally,

W =

[
v

u× v

]
+

[
0
hv

]
=

[
v

u× v+hv

]

where v,u are 3D vectors and h is a scalar. Chasles’ theorem states that we can, in fact,
decompose any 6D vector into this form. In the language of Screw Theory pure forces and
pure moments are both special cases of the more general wrenches, which is the name for
the 6d representation of a screw representing a combination of force and moment. Screw
Theory goes on to define a couple of useful products between screws. The first product is the
‘reciprocal scalar product’ of screws which, for two screws S and T of the form

S =

[
A
B

]
, T =

[
C
D

]

gives a scalar:
S ◦T = A ·D+B ·C

where here the · operator is the standard inner product between vectors. The second product
we will consider is the screw cross product, for screws S and T the screw cross product gives:

S ×T =

[
A×C

A×D+B×C

]

where A×C and A×D+B×C are computed with the standard 3D cross product. The result
of the cross product of two screws is itself another screw.

6.2.2 Representations of wrenches in CGA and PGA

So far we have dealt entirely with the realm of forces and moments and their representation
in 6D screw theory where they are known as wrenches. We have not yet touched on the main
topic of the thesis, Geometric Algebra (GA). Our goal in this section will be to describe a
direct mapping from our 6D screw theory representation to two of the most commonly used
GAs, namely CGA and PGA.

6.2 Forces, moments and static equilibrium 109

6.2.3 Forces as dual lines in CGA

In the previous section on the screw representation we saw how we could describe a force as
a directed line with a magnitude using a 6D vector. Let us now consider how we might go
about representing a force line in CGA. As before consider a force line F expressed as 6D
Plücker coordinates:

F =

[
f

a× f

]
.

We could represent this same force in CGA as the outer product of two conformal points and
infinity:

F = up(a)∧up(a+ f)∧n∞ (6.1)

where we use the notation up() to represent the mapping of a 3DGA point to a conformal
point, ie. X = up(x) = 1

2x2n∞ + x+n0. The object F has a magnitude equal to the intensity
of the force:

F2 = | f |2.

Now consider the dual form of this CGA line:

FI5 = f I3− (a∧ f)I3n∞. (6.2)

This looks very similar to the 6D Plücker representation, in fact if we consider it closely we
can see that it is the same. First, look at the term in front, f I3. This is the 3D dual to a 3D
vector, giving a bivector, specifically the Euclidean bivector orthogonal to f . Now consider
the second half of the formula: −(a∧ f)I3n∞. −(a∧ f)I3 is the 3D dual to a Euclidean
bivector, ie. a vector equal to a× f , just like the lower 3 slots of the 6D screw representation.
As (a∧ f)I3 is a Euclidean vector this makes −(a∧ f)I3n∞ the form of a CGA ‘direction
bivector’. An important thing to note here is that the front and back part of this formula are
linearly independent, just like in the 6D screw representation, ie.

λ1F1I5 +λ2F2I5 = (λ1 f1 +λ2 f2)I3− (λ1a1∧ f1 +λ2a2∧ f2)I3n∞.

Again as with the 6D representation we can consider two anti-parallel forces and extract the
representation of a force couple or moment. Setting λ1 = λ2 and f1 = f =− f2 in the above
leaves us with:

F1I5 +F2I5 =−(a1∧ f −a2∧ f)I3n∞

which we could re-write as:
B = bn∞

110 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

where b is a 3D vector. As previously mentioned this is in the form of a CGA ‘direction
bivector’. These bivectors have the interesting property of being invariant to the action of
translation rotors, effectively making them free vectors in the physics sense. Physically, two
anti-parallel forces create a force couple, a pure moment, and so we will take objects of the
form bn∞ to be representations of moments in our scheme. This seems apt as, physically, a
pure moment is often thought of as a free vector.

Let us now look at the products of GA. Consider two objects of the form:

S = aI3−bn∞, T = cI3−dn∞.

The geometric product between them gives:

ST = aI3cI3−bn∞cI3−aI3dn∞

=−ac− (bc+ad)I3n∞.

In general this is a mixed grade object, if we expand out the geometric product between
vectors it will give us some insight what these grades signify geometrically:

−ac− (bc+ad)I3n∞ = [−a · c−a∧ c]− [(b · c+a ·d +b∧ c+a∧d)I3n∞].

Now collect the terms by grade:

ST = [−a · c]+ [−a∧ c− (b∧ c+a∧d)I3n∞]+ [−(b · c+a ·d)I3n∞],

ST = ⟨ST ⟩0 + ⟨ST ⟩2 + ⟨ST ⟩4

where
⟨ST ⟩0 =−a · c,

⟨ST ⟩2 =−a∧ c− (b∧ c+a∧d)I3n∞,

⟨ST ⟩4 =−(b · c+a ·d)I3n∞.

From this grade-based breakdown it is quite easy to see how the different parts of the result
relate to the various products of Screw Theory. First, the reciprocal product of screws, which
in our 6D representation produced a scalar. In our CGA formulation this scalar maps to the
coefficient of I3n∞ in the result of our geometric product, ie.

⟨ST ⟩4 =−(S ◦T)I3n∞.

6.2 Forces, moments and static equilibrium 111

As S and T are in fact bivectors we can also write this in terms of the outer product:

S∧T =−(S ◦T)I3n∞.

Next we consider the bivector part of the geometric product result, alongside the cross
product of screws:

⟨ST ⟩2 =−a∧ c− (b∧ c+a∧d)I3n∞,

S ×T =

[
A×C

A×D+B×C

]
.

If we rewrite the GA formula here:

⟨ST ⟩2 =−a∧ c− (b∧ c+a∧d)I3n∞ = mI3−gn∞

then equating terms gives:
m = (a∧ c)I3

and
g = (b∧ c)I3 +(a∧d)I3.

The form of the standard vector cross product in 3D GA is, for vectors a and b, given by:

a×b =−(a∧b)I3.

This means we can represent the cross product of screws via the negative of the bivector part
of the geometric product result. In fact, we can write the bivector part of the result in terms of
the ‘commutator product’ of geometric algebra which is also, unsurprisingly perhaps, written
using the ‘×’ notation.

S×T =
1
2
(ST −T S) = ⟨ST ⟩2.

For readers well versed in Screw Theory, Clifford/Geometric Algebra and Lie Theory this is
a well known result. The commutator product equips the motor bivectors with a Lie bracket
just as the cross product equips the screws with one. In fact we can go further into the idea of
the motor bivector as an element of se(3) and note that the grade 0 element of the geometric
product, equal to the GA dot product between the bivectors, is proportional to the Killing
form [79], K, of the Lie algebra ie. ⟨ST ⟩0 = S ·T =−1

4K(S ,T).

112 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

6.2.4 Forces as lines in PGA

In PGA a line is computed as the intersection of two planes. As by default in PGA we are
in a so called ‘inner product null space’ or IPNS we perform the intersection of these two
planes by the outer product. We first break this down component-wise for the intersection of
two planes:

P1 = m1 +d1e0,

P2 = m2 +d2e0,

L = P1∧P2 = (m1 +d1e0)∧ (m2 +d2e0)

= m1∧m2 +(d2m1−d1m2)∧ e0

which we can now re-write this in terms that look more familiar:

L = mlI3− (a∧ml)I3e0.

In this form the line looks very similar to the CGA representation of the line. The line squares
to a scalar, there is a section that is a Euclidean bivector and a section that is a null bivector.
In fact the only thing that we have changed is the form of the null element. In CGA we
typically use the null element n∞ constructed from the sum of two orthogonal basis vectors,
one squaring to +1 and one to −1. Here in PGA the null element e0 is itself a basis vector.
For our 6D force line representation we therefore have exactly the same mapping as we did
in CGA:

F = f I3− (a∧ f)I3e0

and so moments appear as:
B = be0.

We would also expect the various products of Screw Theory to still appear as the various
grades of the result of a geometric product between two elements of this algebra. Indeed they
are the same as the CGA results, but of course replacing I3n∞ with I3e0 which is now the
pseudo-scalar of the algebra.

6.2.5 Force and moment representations in the GA literature

Different authors have taken different approaches when considering the form of forces in
conformal and projective geometric algebra. In Lasenby, Lasenby and Doran’s ‘Rigid Body
Dynamics and Conformal Geometric Algebra’ [74] the conformal force representation is

6.2 Forces, moments and static equilibrium 113

taken to be of the form
F = f +αn∞

where f is the normal Euclidean 3D force vector and α is a scalar multiplier. This force
formulation is then wedged with n∞ and combined with their equation (1.42) to define the
equations of motion. When wedged with n∞ this force takes the form:

F ∧n∞ = f ∧n∞

this is in the form of a direction bivector.
This paper further goes on to specify in equation (1.50) that the form of the moment

bivector that a force of this type generates about a point is:

M = X ∧F.

We can break this up into its constituent parts as follows:

M =

(
1
2

x2n∞ + x+n0

)
∧ (f +αn∞)

=
1
2

x2(n∞∧ f)+(x∧ f)+(n0∧ f)+α(x∧n∞)+α(n0∧n∞).

This moment formulation is then wedged with n∞ and combined with their equation (1.42)
to define the equations of motion. We now consider, as they do in their equation (1.55), the
form of the moment wedged with n∞:

M∧n∞ =
1
2

x2(n∞∧ f)∧n∞+(x∧ f)∧n∞+(n0∧ f)∧n∞+α(x∧n∞)∧n∞+α(n0∧n∞)∧n∞

= x∧ f ∧n∞ +n0∧ f ∧n∞.

Now take the dual of this quantity with respect to 5D pseudoscalar:

(M∧n∞)I5 = f I3− (x∧ f)I3n∞.

This is the bivector form of a CGA line in the direction of the 3D vector f and passing
through the point x.

‘Rigid Body Dynamics and Conformal Geometric Algebra’ [74] therefore uses a mixture
of 1-vectors and bivectors to represent forces but in the end their static equilibrium conditions
are in the form of bivectors and trivectors, indeed they are left with something very similar to
our formulation in section 6.2.2. The main difference in fact is related to which of the two

114 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

orthogonal elements of the wrench formulation we take to be a moment and which to be a
line. Lasenby et al. effectively choose the f ∧n∞ part to be a force and here we choose the
dual line section to be the force.

In fact conceptually our approach here of having lines as forces is the same as Charles
Gunn’s approach in his paper ‘On the Homogeneous Model of Euclidean Geometry’ [42]
and his PhD Thesis [44]. To make this connection more explicit consider the form of a PGA
‘ideal line’, used to represent moments in Gunn’s formulation:

L = e0(α1e1 +α2e2 +α3e3) = e0a

where a = α1e1 +α2e2 +α3e3. The properties of this object are that it squares to 0, ie. it is
null but that the magnitude and direction of the 3D vector a are the magnitude and axis of the
moment. This is identical to the a∧n∞ formulation for bivector moments that we described
in section 6.2.2.

As discussed in Anthony Lasenby’s ‘Rigid Body Dynamics in a Constant Curvature
Space and the ‘1D-up’ Approach to Conformal Geometric Algebra’ [73], both ‘On the
Homogeneous Model of Euclidean Geometry’ [42] and ‘Rigid Body Dynamics and Confor-
mal Geometric Algebra’ [74] use the same form for rotors and generalised instantaneous
velocities, known in the Screw Theory literature as twists.

6.3 Screw transformations, instantaneous twists, and the
motor manifold

6.3.1 Time derivatives of frame transformations

Before looking at dynamics in detail, we will define the notation used and state various
definitions.

We will consider a world that contains a single rigid body. A frame is rigidly attached
to the rigid body and the body moves through space such that a time varying rotor R will
transform an arbitrary fixed point X ′ in the body frame into the corresponding point X in the
world frame:

X = RX ′R̃.

We will take time derivatives. As X ′ is fixed:

Ẋ = ṘX ′R̃+RX ′ ˙̃R.

6.3 Screw transformations, instantaneous twists, and the motor manifold 115

Now substitute in X ′R̃ = R̃X and RX ′ = XR:

Ẋ = ṘR̃X +XR ˙̃R.

A rotor by definition has the property that RR̃ = 1. If we differentiate this constraint with
respect to time

ṘR̃+R ˙̃R = 0

which means we can write:
Ẋ = (ṘR̃)X−X(ṘR̃)

which is twice the anti-commutator of X and ṘR̃. If X is a 1-vector and as ṘR̃ is a bivector
we can write:

Ẋ =−2X · (ṘR̃).

If we now label our bivector quantity:

Ωw =−2ṘR̃ (6.3)

it allows us to write:
Ẋ =−1

2
(ΩwX−XΩw) = X×Ωw (6.4)

where × represents the commutator product. Note that in this form with the commutator
product no assumptions are made of the grade or other properties of X . If we do restrict
X to 1-vectors however, this allows us to write:

Ẋ = X ·Ωw.

We can further re-arrange equation (6.3) to get an equation for the relationship between
the rotor R and its time derivative in terms of this quantity Ωw:

Ṙ =−1
2

ΩwR. (6.5)

This quantity Ωw is actually our generalised instantaneous screw velocity, expressed in the
world frame. Geometrically it is a screw and we can transform it just like any other screw
between frames. We can therefore write Ωw = RΩR̃ and change equation (6.5) to:

Ṙ =−1
2

RΩR̃R =−1
2

RΩ (6.6)

116 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

where Ω is the velocity bivector expressed in the body frame. For reference the reverse of
this quantity is:

˙̃R =−1
2

Ω̃R̃.

In the screw theory literature Ω is known as a ‘twist’ or ‘velocity screw’. To take further time
derivatives we can just use the chain rule:

R̈ =−1
2

RΩ̇− 1
2

ṘΩ (6.7)

and we will also calculate the reverse for reference:

¨̃R =−1
2

˙̃
ΩR̃− 1

2
Ω̃

˙̃R.

6.4 Momentum and inertia

6.4.1 Screw momentum

In traditional 3D dynamics formulations we specify that the resultant force is the rate of
change of linear momentum and the resultant moment is the rate of change of angular
momentum. In a screw formulation we can specify that, for a body under the influence of
multiple external forces Wi, the resultant wrench Wr is the rate of change of screw momentum
Ψ with time:

Wr = ∑Wi =
∂Ψ

∂ t
.

We can, of course, write this whether we are working in the 6D vector space, CGA or PGA.

6.4.2 Mapping from screw velocity to screw momentum

In 3D dynamics we are used to the idea of converting between linear velocity and linear
momentum via multiplication or division by the mass of the rigid body. For a body of mass
m and linear velocity vl the linear momentum is simply ρl:

ρl = mvl.

When it comes to angular velocity, va, and angular momentum, ρa, however we have a more
complicated relationship. In fact, for a body centred and axis aligned reference frame, the

6.4 Momentum and inertia 117

two are related by a diagonal matrix known as the inertia tensor that we label here as Ma:

ρa = Mava

where Ma can be expressed in the form of γi, the second moments of volume:

Ma = m

γ1 0 0
0 γ2 0
0 0 γ3

 .
While it is clear that our screw equivalent of the inertia tensor should also be a linear

function that somehow combines the linear and rotational aspects of the above and maps
between screw velocity and screw momentum it is not immediately obvious how we should
go about constructing such a function. Let us write the matrix version of this linear function
for now as Q and the GA version as Q:

Ψ = Q[Ωw].

To solve the problem of determining this function we will construct a little thought
experiment. Imagine a rigid body that is initially at rest at the origin but which is then acted
on by a wrench W . The velocity of objects attached to the frame of the body are given by:

Ẋ = X×Ωw = X×Q−1[Ψ].

By differentiating this equation we can calculate the acceleration of objects in the frame:

Ẍ = Ẋ×Q−1[Ψ]+X×Q−1[Ψ̇]. (6.8)

In this case the body is initially at rest implying Ωw = 0 allowing us to eliminate the first
term and leaving us with:

Ẍ = X×Q−1[Ψ̇] = X×Q−1[W]. (6.9)

We therefore have a direct mapping from the wrench acting on the body to the initial
acceleration of objects in the frame and we can now use our physical intuition about the
world to guide us to a compatible form of Q−1 and hence Q.

To calculate the form of this linear function Q in GA we will first have to define what is
known in the GA literature as a reciprocal frame. An important thing to note here is that
this is different to the concept in screw theory of a screw and a twist being reciprocal [40]

118 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

which we will come to later when considering virtual work and power. What we mean by a
reciprocal frame here is a set of reciprocal bases Si that are matched to the motor bivectors Si

such that when the GA inner product is taken between the two matched elements the result is
1 but otherwise 0, ie.:

Si ·S j =

1 i = j

0 i ̸= j

These reciprocal frame constructs are fairly common in the GA literature and are especially
useful for this type of problem.

As Q−1 is a linear function operating on a motor bivector W in CGA it can be written as:

Q−1[W] = ∑
i

[
(Si ·W)∑

k
cikSk

]
(6.10)

where cki are scalar coefficients, Si is the reciprocal frame for the motor bivectors and Sk are
the motor bivectors themselves. We will take Sk and Si as follows:

Sk = [e1I3, e2I3, e3I3, e1∧n∞, e2∧n∞, e3∧n∞],

Si = [−e1I3, −e2I3, −e3I3, e1∧n0, e2∧n0, e3∧n0]

and will seek to determine cik. This formulation is equivalent to a square matrix formulation
of Q−1 where the coefficients cik are the elements in the matrix. What we need to do here is
to find out exactly what these cik coefficients have to be.

Firstly we will probe the response of the function to the action of a force passing through
the centre of mass of the object, which lies at the origin. We can write such a force as a dual
line in CGA as:

W = FI5 = f I3− (a∧ f)I3n∞

where in this case a is 0 as we are at the origin, giving:

W = FI5 = f I3.

The mapping that embeds a 3D point x in CGA is given by:

X =
1
2

x2n∞ + x+n0

6.4 Momentum and inertia 119

which, after differentiation twice leads to:

Ẍ =
1
2
(ẍx+2ẋẋ+ xẍ)n∞ + ẍ.

As the body is initially stationary, ẋ is zero and so we have for time t = 0:

Ẍ =
1
2
(ẍx+ xẍ)n∞ + ẍ = (ẍ · x)n∞ + ẍ.

For the case of a force of magnitude | f | applied to the centre of mass of a rigid body we
would expect all points on the body to accelerate linearly at | f |m in the direction of f , or
more formally ẍ = f

m for all x. We can encode this expectation by substituting Ẍ and X into
equation (6.9):

(ẍ · x)n∞ + ẍ =
(

1
2

x2n∞ + x+n0

)
×Q−1[W] (6.11)

and we can then apply our specific case:(
f
m
· x
)

n∞ +
f
m

=

(
1
2

x2n∞ + x+n0

)
×∑

i

[
(Si ·W)∑

k
cikSk

]
.

Looking closely at

∑
i

[
(Si ·W)∑

k
cikSk

]
we can see that W = f I3 is a Euclidean bivector and, when dotted with each of the reciprocal
frame elements in turn it is non zero only for [−e1I3,−e2I3,−e3I3] in which cases the dot
product gives only fi, the component of the force in the ei direction. In other words we could
write:

∑
i

[
(Si ·W)∑

k
cikSk

]
= ∑

j
f j

[
∑
k

c jkSk

]
= ∑

j
∑
k

f jc jkSk

where j ∈ (1,2,3) and f j = e j · f . We can combine this with Ẍ = X · Ω̇w to give:(
f
m
· x
)

n∞ +
f
m

=

(
1
2

x2n∞ + x+n0

)
·∑

j
∑
k

f jc jkSk

(
f
m
· x
)

n∞ +
f
m

= ∑
j
∑
k

f jc jk

(
1
2

x2n∞ + x+n0

)
·Sk

120 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

Let us now examine the terms on the right hand side of the above equation:(
1
2

x2n∞ + x+n0

)
·Sk =

1
2

x2n∞ ·Sk + x ·Sk +n0 ·Sk

For Sk ∈ en∧n∞,n ∈ [1,2,3] we have the results that n0 ·Sk = en, n∞ ·Sk = 0, x · (en∧n∞) =

xnn∞. For Sk ∈ [e1I3, e2I3, e3I3] we have the results that n0 ·Sk = 0, n∞ ·Sk = 0.

(
f
m
· x
)

n∞ +
f
m

= ∑
j
∑
k

f jc jk

(
1
2

x2n∞ + x+n0

)
·Sk

= ∑
j

f j(c j1x · (e1I3)+ c j2x · (e2I3)+ c j3x · (e3I3)

+ c j4e1 + c j5e2 + c j6e3 + c j4x1n∞ + c j5x2n∞ + c j6x3n∞) (6.12)

Now we can consider the above equation component-wise and extract the required transfor-
mation coefficients. Firstly, consider the coefficients of n∞:(

f
m
· x
)

n∞ = ∑
j

f j(c j4x1n∞ + c j5x2n∞ + c j6x3n∞)

Expand the left side into a sum of elements of the force vector:(
f
m
· x
)

n∞ = ∑
j

f jx j

m
n∞.

Comparing terms we see we have arrived at the following solution:

c14,c25,c36 =
1
m

c24,c34,c15,c35,c16,c26 = 0

Now that we have dealt with the n∞ terms we can return to the Euclidean bivectors:

f
m

= ∑
j

f j(c j1x · (e1I3)+ c j2x · (e2I3)+ c j3x · (e3I3)+ c j4e1 + c j5e2 + c j6e3).

We have just calculated the c j4,c j5,c j6 terms in the right hand side of this equation and so by
substituting these in we get something of the form:

f
m

=
f
m
+∑

j
f j(c j1x · (e1I3)+ c j2x · (e2I3)+ c j3x · (e3I3))

6.4 Momentum and inertia 121

Fig. 6.1 The multivector field generated by the commutator product of a twist and a field of
multivector points can be visualised and provides a visual verification of the action of specific
types of twist. Here we are visualising a twist in the form of a ‘direction bivector’ which
produces a uniform linear velocity field. This implies that our inertia tensor, or indeed some
preprocessing step to the inertia tensor, must map from lines through the origin to direction
bivectors, a fact proved in the mathematical content of this section.

which implies that c11,c12,c13,c21,c22,c23,c31,c32,c33 = 0. A visual representation of the
argument made here can be seen in Figure 6.1.

So far we have dealt with all the translational elements of the transformation, however we
have only prescribed 18 of the total 36 (6×6) degrees of freedom of the problem. To continue
calculating the required form of the transformation we will now analyse the effect of a torque
applied to the rigid body. Firstly we will again need the general form of the acceleration of a
point due to a wrench:

(ẍ · x)n∞ + ẍ =
(

1
2

x2n∞ + x+n0

)
·∑

i
∑
k
(Si ·W)cikSk. (6.13)

We will now apply a moment to the rigid body, again at rest at the origin. From standard
3D kinematics we know that if we have a body rotating about its centre of mass and about an
axis v̂a with angular speed |va|, ie. va = |va|v̂a then, provided that the centre of mass has no
linear velocity we can calculate the linear velocity of a point on the body as:

ẋ = va× x = (M−1
a ρa)× x

122 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

Fig. 6.2 As in Figure 6.1 here we are visualising the multivector field generated by the
commutator product of a twist and a field of points. Here the twist that is visualised is a line
through the origin. The field that is generated is rotational about the line. Again as with the
translational field of Figure 6.1 this implies specific constraints on our inertia tensor and
shows the inherent reciprocal nature of momentum screws/wrenches and velocity twists in
the Screw Theory formulation of dynamics.

6.4 Momentum and inertia 123

and the acceleration of a point as:

ẍ = v̇a× x+ va× ẋ

where × is the traditional cross product operation. In this thought experiment the body is
initially at rest allowing us to remove the ẋ term and leaving us with:

ẍ = v̇a× x = (M−1
a ρ̇a)× x = (M−1

a t)× x

where t is the 3d torque vector. The GA equivalent of the traditional 3d cross product for
vectors a and b is −I3(a∧b). Which means we can write:

(M−1
a ρa)× x =−I3((M

−1
a t)∧ x).

We can represent this same moment in our CGA formulation as the bivector wrench W = tn∞.
Again we look at:

∑
i

∑
k
(Si ·W)cik = ∑

i
∑
k
(Si · (tn∞))cik

and from this we note that (Si · (tn∞)) = 0 for Si ∈ [−enI3] and that (Si · (tn∞)) = ti−3 for
i ∈ [4,5,6]. For this case we can therefore write equation (6.13) as:

(
(
−I3((M

−1
a t)∧ x)

)
· x)n∞− I3((M

−1
a t)∧ x) =

(
1
2

x2n∞ + x+n0

)
· ∑

i∈[4,5,6]
∑
k

ti−3cikSk

The left hand side of this equation collapses simply to ẍ and we bring X inside the summation
again on the right:

−I3((M
−1
a t)∧ x) = ∑

i∈[4,5,6]
∑
k

ti−3cik

(
1
2

x2n∞ + x+n0

)
·Sk.

We can now use the same results as noted previously to simplify the right hand side of this
equation, leading to:

−I3((M
−1
a t)∧ x) = ∑

i∈[4,5,6]
ti−3(ci1x · (e1I3)+ ci2x · (e2I3)+ ci3x · (e3I3)

+ ci4e1 + ci5e2 + ci6e3 + ci4x1n∞ + ci5x2n∞ + ci6x3n∞)

124 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

Equating like terms eliminates all the n∞ terms, ie. ci4,ci5,ci6 = 0 for i ∈ [4,5,6]. This leaves
us with:

−I3((M
−1
a t)∧ x) = ∑

i∈[4,5,6]
ti−3(ci1x · (e1I3)+ ci2x · (e2I3)+ ci3x · (e3I3)).

We can break up the left side of this component-wise:

∑
i∈[4,5,6]

−I3((M
−1
a ti−3ei−3)∧ x) = ∑

i∈[4,5,6]
ti−3(ci1x · (e1I3)+ ci2x · (e2I3)+ ci3x · (e3I3))

Now assume that our torque vector is aligned with one of the principal axes of the rigid body,
say e1, this implies ti−3 is only non-zero for i = 4:

−I3((t1M−1
a e1)∧ x) = t1(c41x · (e1I3)+ c42x · (e2I3)+ c43x · (e3I3))

t1
mγ1

(x∧ e1) I3 = t1(c41x · (e1I3)+ c42x · (e2I3)+ c43x · (e3I3))

Which is true because M−1
a e1 =

1
mγ1

e1. Noting that (x∧ e1) I3 = x ·(e1I3) allows us to identify
the c parameters: c41 =

1
mγ1

, c42 = 0, c43 = 0.
Of course our choice of e1 as the principal axis to which our torque vector aligns was

arbitrary, we could equally have chosen one of the other two principal axes, e2 and e3 with
their respective γ2 and γ3. As a result of this symmetry we can directly identify our final c
parameters: c51 = 0, c52 =

1
mγ2

, c53 = 0, c61 = 0, c62 = 0, c63 =
1

mγ3
.

Figure 6.2 gives a graphical illustration of why this form of mapping is required for
rotations and torques.

6.4.3 The Screw Inertia Tensor

For our 6D vector representation had we not just done the maths of the previous section we
might have been tempted to stack the vl and va on top of each other to produce a combined
inertia tensor like:

Ψ =

[
ρl

ρa

]
=

m 0 0 0...
0 m 0 0...
0 0 m 0...

0... 0... 0... Ma

[

vl

va

]
.

This however would ignore the fundamental conceptual differences in the action of the
top 3 and bottom 3 elements of the 6D representation as a wrench vs as a twisting motion
generator. Instead, we need to use the coefficients cik of the last section to produce a matrix

6.4 Momentum and inertia 125

that performs a ‘flip’ in the relative positions of the parts of the vectors while also applying
the required scaling along each principal axis. Putting the calculated coefficients in place we
can see that the matrix that comes out for Q looks like this:

Ψ =

[
ρl

ρa

]
=

0... m 0 0
0... 0 m 0
0... 0 0 m
Ma 0.. 0.. 0..

[

va

vl

]
.

We could also achieve this ‘flip’ effect via a diagonal matrix and a permutation matrix:

Ψ =

[
ρl

ρa

]
=

m 0 0 0...
0 m 0 0...
0 0 m 0...

0... 0... 0... Ma

[

0... I(3×3)
I(3×3) 0...

][
va

vl

]
(6.14)

where I(3×3) is the 3×3 identity matrix.
When writing the inertia tensor in CGA it is convenient to do a little relabelling for ease

of reading. The reciprocal frame of the motor bivectors in CGA is as follows:

−e1I3, −e2I3, −e3I3, e1∧n0, e2∧n0, e3∧n0.

Which we can break into the two groups:

li = eiI3, li =−eiI3

ti = ei∧n∞, t i = ei∧n0

and so with these we can write the inertia tensor:

Ψ = Q(Ω) = m
i=3

∑
i=1

[
(Ω · t i)li + γi(Ω · li)ti

]
and the inverse inertia tensor:

Q−1(Ψ) = Ω =
1
m

i=3

∑
i=1

[
1
γi
(Ψ · t i)li +(Ψ · li)ti

]
.

126 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

This inertia tensor performs the same kind of ‘flip’ that we saw for the 6D screw representa-
tion. Effectively our inertia tensor does the following mapping:

e1I3 → e1∧n∞, e1∧n∞ → e1I3

e2I3 → e2∧n∞, e2∧n∞ → e2I3

e3I3 → e3∧n∞, e3∧n∞ → e3I3

The reciprocal frame construction of the inertia tensor that we have discussed so far works
for many algebras but for degenerate metric algebras such as PGA the fact that we have an
element squaring to zero means this setup does not work. Instead we need to do something
a little different. The degenerate metric approach to reciprocal frames [43] is to consider
some blade which we will label xi that wedges with a given blade of magnitude bi ie bixi to
produce the pseudoscalar with magnitude bi ie. bixi∧ xi = biI. Clearly, despite us labelling it
xi , this object is not quite the same as the reciprocal frame, although it allows us to perform
the same function of coordinate free coefficient selection producing the magnitude bi as the
scalar coefficient of the pseudoscalar. Let us now identify this pseudo-reciprocal frame for
the PGA bivectors:

e1∧ e2 → −e3∧ e0, e1∧ e0 → −e2∧ e3

e1∧ e3 → e2∧ e0, e2∧ e0 → e1∧ e3

e2∧ e3 → −e1∧ e0, e3∧ e0 → −e1∧ e2

Comparing the PGA pseudo-reciprocal frame mapping with that of our CGA-inertia tensor
mapping it is immediately clear that they are equivalent up to a minus sign. We will now
define a function to perform this PGA mapping and will call it J. J has the following action:

J(bixi) = ⟨bixi∧ xi⟩e1230xi = bixi

where the syntax ⟨A⟩e1230 returns the scalar coefficient of e1∧e2∧e3∧e0 in A. We can extend
this operation to combinations of basis elements by linearity so that for X = ∑i bixi:

XJ = J(X) = J

(
∑

i
bixi

)
= ∑

i
J(bixi).

As with our CGA reciprocal frame let’s now write our PGA pseudo-reciprocal frame in
two groups:

li = eiI3, li = ei∧ e0

6.4 Momentum and inertia 127

ti = ei∧ e0, t i = eiI3

This means we can write our PGA inertia tensor as:

Ψ = Q(Ω) =−m
i=3

∑
i=1

[
⟨Ω∧ li⟩e1230li + γi⟨Ω∧ t i⟩e1230t i]

and its inverse inertia tensor:

Q−1(Ψ) = Ω =− 1
m

i=3

∑
i=1

[
1
γi
⟨Ψ∧ li⟩e1230li + ⟨Ψ∧ t i⟩e1230t i

]
.

We could also apply the J map first to first ‘flip’ the input and apply a component-wise
scaling A to the result:

Ψ = Q(Ω) = A[J(Ω)].

This J map first formulation is conceptually the same as the screw formulation with a flip
permutation matrix as in equation (6.14).

6.4.4 Motor Bivectors as the Principal Screws of Inertia

We can visualise the motor bivectors as a frame of screws attached to the origin. These motor
bivectors are a version of the Principal Screws of Inertia, specifically they are the principal
screws in a Plücker and Hunt sense as opposed to Ball’s original formulation of the principal
screws. Effectively what we are doing in the inertia tensor is considering these principal
screws as wrenches and analysing the impact of them on the motion of the body.

By considering the bivectors as localised screws we can begin to build intuition about
them and their properties. First of all, we will consider how they, and their reciprocal frame,
transform under the action of rigid body rotors. The Euclidean bivectors are in the form of
a dual line through the origin and are affected by rotors exactly as lines are. The direction
type motor bivectors (ei∧n∞) are, as we mentioned previously, invariant to translation rotors
but are affected by rotation rotors. For the general case of the rigid body rotor the direction
bivectors therefore are affected only by the rotational aspect of the rotor. This is in keeping
with the view of these bivectors as dual lines at infinity, known in the projective geometry
world as ‘ideal’ lines.

The transformation properties of the motor bivectors suggests an inroad on the problem
of defining non-axis aligned inertia tensors which often comes up in analysis problems when
we wish to transform the frame of a body to be about a known axis of rotation. We can phrase
this specific problem as follows. Consider a body with a known, axis aligned, inertia tensor

128 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

QB and a world frame momentum Ψ. We can get the velocity of the body by transforming
the world frame momentum back to the body frame, applying the inverse inertia tensor, and
transforming back:

Ω = RQ−1
B (R̃ΨR)R̃.

We will wrap this RQ−1
B (R̃ΨR)R̃ operation up as an inertia tensor in its own right and label it

Q−1
W , we can therefore write:

Ω = Q−1
W (Ψ) = RQ−1

B (R̃ΨR)R̃. (6.15)

The problem of defining non-axis aligned inertia tensors is, given we know Q−1
B and R,

exactly what form does Q−1
W take?

The form of Q−1
B is:

Q−1
B (ΨB) = ΩB =

1
m

i=3

∑
i=1

[
1
γi
(ΨB · t i)li +(ΨB · li)ti

]
.

Based on the fact we can transform screws and their reciprocal frames with rotors as usual,
we will guess the form of Q−1

W to be as follows:

Q−1
W (Ψ) = Ω =

1
m

i=3

∑
i=1

[
1
γi
(Ψ · (Rt iR̃))(RliR̃)+(Ψ · (RliR̃))(RtiR̃)

]
. (6.16)

Note this is just the same as M−1
B except that we have transformed all of the motor bivectors

and reciprocals by R, effectively transforming the frame of principal screws to be centred
and aligned with the rigid body but expressed in the world frame. We can check whether our
guess is correct as follows. Substitute Ψ = (RΨBR̃):

Q−1
W (Ψ) =

1
m

i=3

∑
i=1

[
1
γi
((RΨBR̃) · (Rt iR̃))(RliR̃)+((RΨBR̃) · (RliR̃))(RtiR̃)

]
.

Noting that (RΨBR̃) · (Rt iR̃)≡ΨB · t i and (RΨBR̃) · (RliR̃)≡ΨB · li we can write:

Q−1
W (Ψ) =

1
m

i=3

∑
i=1

[
1
γi
(ΨB · t i)(RliR̃)+(ΨB · li)(RtiR̃)

]
.

6.5 Unconstrained rigid body dynamics 129

We can then take the rotor application outside of the summation by factorisation and we have
arrived at the required relation of equation (6.15):

Q−1
W (Ψ) = R

(
1
m

i=3

∑
i=1

[
1
γi
(ΨB · t i)li +(ΨB · li)ti)

])
R̃

= RQ−1
B (ΨB)R̃ = RQ−1

B (R̃ΨR)R̃.

Of course by allowing the movement of the frame of the inertia tensor with the body it will
no longer be constant and we therefore might also want the form of the time derivative for
potential applications:

˙Q−1
W (Ψ)+Q−1

W (Ψ̇) = ṘQ−1
B (R̃ΨR)R̃+RQ−1

B (R̃ΨR) ˙̃R+RQ−1
B (˙̃RΨR+ R̃ΨṘ)R̃. (6.17)

In this subsection we have analysed the principal screws as CGA objects and our analysis of
the translation of the inertia tensor was phrased using the transformation of the reciprocal
frame. In reality we could equally have done our analysis from the PGA perspective as
well, with our pseudo-reciprocal frame taking the place of the reciprocal frame and so our
equivalent transformed inverse inertia tensor would appear as:

Q−1
W (Ψ) =− 1

m

i=3

∑
i=1

[
1
γi
⟨Ψ∧ (RliR̃)⟩e1230(RliR̃)+ ⟨Ψ∧ (Rt iR̃)⟩e1230(Rt iR̃)

]
.

6.5 Unconstrained rigid body dynamics

Equipped with forces, moments, momentum, velocities and inertia tensors we are now at a
position where we can formulate the equations of motion and simulate them. We will start
by considering the dynamics of an unconstrained rigid body moving under the influence of
external forces and moments. We can write the state of our rigid body at a time t as:

Yt =

[
Rt

Ψt

]

and its first time derivative is:

Ẏt =

[
Ṙt

Ψ̇t

]
=

[
−1

2RtΩt

RtWbt R̃t

]

130 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

Fig. 6.3 A cuboid is simulated spinning about its 2nd principal axis of inertia while translating
linearly. Due to the intermediate axis theorem small instabilities in the rotation build quickly
causing rapid flips in orientation. Despite these rapid flips the linear motion of the centre of
mass is unaffected. Blue: the path of the centre of mass, Green, Red, Orange: the path of
several vertices on the cuboid as it undergoes a flip in orientation.

6.6 Constrained dynamics via virtual power 131

where Ψt is the momentum bivector at time t expressed in the world frame and Wbt is the
resultant external wrench acting on the body expressed in the body frame. From this point on
we will drop the t subscript and simply state that all variables are functions of time. From our
discussion in the previous section we know that we can further expand Ω using the inverse
inertia tensor Q−1:

Ω = Q−1[R̃ΨR].

Re-writing the time derivative of the state with this equation for Ω gives:

Ẏ =

[
Ṙ
Ψ̇

]
=

[
−1

2RQ−1[R̃ΨR]
RWbR̃

]
.

6.6 Constrained dynamics via virtual power

Unconstrained dynamics, while important, do not allow us to represent all the types of motion
that we see in the real world around us. In many practical situations we are faced with the
problem of constrained motion. Consider modelling a rigid body that can move dynamically
under external forces but is constrained so that one or more points lie on a surface or a
situation where a rigid body is constrained such that it can translate but not rotate. These are
the types of problem we will attack here.

To impose a constraint on our dynamics model we will use the concept of a reaction
wrench. The reaction wrench provides a combined external force and moment that acts on
the rigid body in addition to the other external wrenches and, in doing so, forces the body
to move in a way that respects the constraints. We will write Wb as the sum of external
wrenches, S, plus some reaction wrench, F , caused by the constraints. As we already know
S, all we need to calculate F is the value of Wb required to keep the constraints valid.

In traditional constrained dynamics work the concepts of virtual work and virtual power
are widespread. In the virtual work/virtual power literature constraints are enforced by
imagining several independent virtual reaction forces and moments at the constraint position
and ensuring that any velocity of the body produces zero power against these forces/moments.
In the screw framework that we have developed, the virtual power, P, produced by a virtual
world frame wrench, T , when the body moves with a body frame screw velocity Ω is given
by:

P = Ω∧ (R̃T R)

and is of the form
P = pI3n∞

132 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

where p is a virtual scalar power. Differentiating this gives:

Ṗ = Ω̇∧ (R̃T R)+Ω∧
(

˙̃RT R+ R̃(Ṫ R+T Ṙ)
)
.

We can now substitute in our dynamics equation for Ω̇:

Ω̇ = Q−1[˙̃RΨR+Wb + R̃ΨṘ],

Ṗ = Q−1[˙̃RΨR+Wb + R̃ΨṘ]∧ (R̃T R)+Ω∧
(

˙̃RT R+ R̃(Ṫ R+T Ṙ)
)
.

Setting the virtual power and rate of change of virtual power to 0 gives us the virtual power
condition for our constraint. First:

0 = Ω∧ (R̃T R)

tells us that the virtual wrench must be parallel to the screw velocity. Setting the rate of
change of virtual power to be zero allows us to write:

Q−1[˙̃RΨR+Wb + R̃ΨṘ]∧ (R̃T R) =−Ω∧
(

˙̃RT R+ R̃(Ṫ R+T Ṙ)
)

Q−1[Wb]∧ (R̃T R)+Q−1[˙̃RΨR+ R̃ΨṘ]∧ (R̃T R) =−Ω∧
(

˙̃RT R+ R̃(Ṫ R+T Ṙ)
)

Q−1[Wb]∧ (R̃T R) =−Q−1[˙̃RΨR+ R̃ΨṘ]∧ (R̃T R)−Ω∧
(

˙̃RT R+ R̃(Ṫ R+T Ṙ)
)

If T is a static constraint we can specify that Ṫ = 0 leaving us with:

Q−1[Wb]∧ (R̃T R) =−Q−1[˙̃RΨR+ R̃ΨṘ]∧ (R̃T R)−Ω∧
(

˙̃RT R+ R̃T Ṙ
)
.

Which can again be solved for Wb and hence F .
If we specify the way that T varies with time we can add curved surface constraints.

Consider a situation in which a rigid body is constrained such that one point A always touches
a sphere centred at point V . Given the point is always touching the sphere we know that T
must always be parallel to the line joining A and V , we would therefore write:

T = A∧V ∧n∞.

Taking a time derivative of this we see:

Ṫ = Ȧ∧V ∧n∞.

6.7 Constrained dynamics by pinned multivectors 133

As A is driven by the rotor R, ie:
A = RA0R̃

we get:
Ȧ = ṘA0R̃+RA0

˙̃R

and so:
Ṫ = (ṘA0R̃+RA0

˙̃R)∧V ∧n∞.

We can then directly substitute this into:

Q−1[Wb]∧ (R̃T R) =−Q−1[˙̃RΨR+ R̃ΨṘ]∧ (R̃T R)−Ω∧
(

˙̃RT R+ R̃(Ṫ R+T Ṙ)
)

and so calculate Wb. To constrain this same point to a circle we would add an additional
planar constraint, ie. the point must lie on the plane in which the circle lies and on the sphere
of which the circle is the equator.

6.7 Constrained dynamics by pinned multivectors

Consider a geometric primitive represented by multivector U in the body frame and the same
geometric primitive represented by multivector V when expressed in the world frame. These
two multivectors can be related by the rotor R:

V = RUR̃

or equivalently:
U = R̃V R.

Taking first and second derivatives gives us the expressions:

U̇ = ˙̃RV R+ R̃(V̇ R+V Ṙ), (6.18)

Ü = ¨̃RV R+ ˙̃R(V̇ R+V Ṙ)+ ˙̃R(V̇ R+V Ṙ)+ R̃(V̈ R+2V̇ Ṙ+V R̈)

= ¨̃RV R+2 ˙̃R(V̇ R+V Ṙ)+ R̃V̈ R+2R̃V̇ Ṙ+ R̃V R̈. (6.19)

The next step is to think about what these expressions mean physically. Essentially we have
two ‘views’ of the same object, one in body space and one in world space. For example we
can imagine the U is a point attached to our rigid body and V is a point in the world that that
point is also attached to. In a sense we are ‘pinning’ the rigid body to V by its extremity U .

134 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

Lets consider first the case that both of these ‘views’ of the object are fixed, ie. the position
and orientation of U cannot change with respect to the coordinate system of the body and the
position and orientation of V cannot change with respect to the origin. Mathematically we are
stating that U̇,Ü,V̇,V̈ = 0. If we substitute these values into (6.19) for the time derivatives
we end up with the following equation:

0 = ¨̃RV R+ R̃V R̈+2 ˙̃RV Ṙ. (6.20)

This equation is a constraint on the second time derivative of R that will ensure that U and V
do not vary with time. We can go a step further here and substitute our expression for R̈ from
equation (6.7), leading to:

0 =−1
2

˙̃
ΩR̃V R− 1

2
Ω̃

˙̃RV R− 1
2

R̃V RΩ̇− 1
2

R̃V ṘΩ+2 ˙̃RV Ṙ.

Now if we substitute in Ṙ =−1
2RΩ and ˙̃R =−1

2Ω̃R̃:

0 =−1
2

˙̃
ΩR̃V R+

1
4

Ω̃Ω̃R̃V R− 1
2

R̃V RΩ̇+
1
4

R̃V RΩΩ+
1
2

Ω̃R̃V RΩ.

Simplify and gather, substituting U = R̃V R:

0 =−1
2

˙̃
ΩU− 1

2
UΩ̇+

1
4

Ω̃
2U +

1
4

UΩ
2 +

1
2

Ω̃UΩ.

Now separate the terms with Ω̇:

1
2

˙̃
ΩU +

1
2

UΩ̇ =
1
4

Ω̃
2U +

1
4

UΩ
2 +

1
2

Ω̃UΩ.

As Ω,Ω̇ are bivectors their reverse is just a negation:

−1
2

Ω̇U +
1
2

UΩ̇ =
1
4

Ω
2U +

1
4

UΩ
2 +

1
2

ΩUΩ. (6.21)

So far, we have done a lot of algebra but so far appear to be no closer to calculating our
reaction wrench. If we calculate an expression for Ω̇ however, we start to make headway
towards a solution:

Ω̇ = Q−1[˙̃RΨR+ R̃Ψ̇R+ R̃ΨṘ]

using Wb = R̃Ψ̇R we can also write:

= Q−1[˙̃RΨR+ R̃ΨṘ]+Q−1[Wb] (6.22)

6.8 Geometric objects as constraints 135

and so we can now substitute in on the left hand side of equation (6.21) for Ω̇:

LHS =−1
2

(
Q−1[˙̃RΨR+ R̃ΨṘ]+Q−1[Wb]

)
U +

1
2

U
(

Q−1[˙̃RΨR+ R̃ΨṘ]+Q−1[Wb]
)
.

Now we separate out the terms with Wb

=−1
2

Q−1[Wb]U +
1
2

UQ−1[Wb]+

(
−1

2
Q−1[˙̃RΨR+ R̃ΨṘ]U +

1
2

UQ−1[˙̃RΨR+ R̃ΨṘ]
)

and take all terms not containing Wb onto the right side of the equation. We now have
something of the form:

−1
2

Q−1[Wb]U +
1
2

UQ−1[Wb] = Some function of R,Ψ,U.

We can rewrite this to use the commutator product:

(U×Q−1[Wb]) = Some function of R,Ψ,U. (6.23)

If we now decide to write our total bivector wrench, Wb, as the sum of external wrenches, S,
plus some reaction wrench, F , caused by the constraints:

(U×Q−1[F]) =−(U×Q−1[S])+Some function of R,Ψ,U

we now have a constraint expression that fixes the reaction wrench F as a function of the
state of the system and the forces applied to it.

For a given R,Ψ,U this constraint is linear in F and can be solved for F so long as we
provide a correct basis for the constraint wrench. An important point to make here is that
this discussion has been entirely algebra agnostic. This framework works equally well for
CGA, PGA or indeed many other geometric algebras, a topic that we will return to later on.

6.8 Geometric objects as constraints

Now that we have identified a means of enforcing constraints via pinned geometric primitives
let us have a look at exactly what constraints are imposed by specific choices of this pinned
multivector for CGA and PGA.

136 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

6.8.1 Point constraint

If we want to pin a specific point in our rigid body to a point in the world we can set an
invariant point constraint. In this case U and V are both points and, due to the rotational
symmetry of a point our reaction wrench F can only support translational forces and no
moments. In this case F has 3 degrees of freedom, corresponding to each of the translational
principal screws of inertia. This point constraint can be set in both CGA and PGA.

6.8.2 Point-pair constraint

Consider a bivector G of the form:
G = A∧B

where A and B are CGA points. This object is invariant only under the action of rotation
rotors about an axis parallel to the line joining A and B. In this case F has 5 degrees of
freedom corresponding to 3 translational forces and 2 moments. This point-pair constraint is
specific to CGA.

6.8.3 Direction constraint

Consider a so called ‘direction’ bivector in CGA of the form:

D = d∧n∞

where d is a 3D vector. This object is invariant under the action of all translation rotors and
is invariant to rotation rotors with axis of rotation parallel to d, ie. rotors of the form:

R = e−
θ

2 dI3

where I3 is the pseudoscalar of 3D space. In this case F only has 2 degrees of freedom
corresponding to two moments with axes perpendicular to d. For a PGA equivalent of this
constraint a bivector of the form:

D = d∧ e0

can be used to achieve the same thing.

6.8 Geometric objects as constraints 137

Fig. 6.4 Left: A physical pendulum moves under the effect of gravity and with a starting
linear momentum. It is constrained such that a line, coincident with one end of the pendulum
shown in blue, is pinned between the body and world reference frames. The symmetry of the
line leads to constrained motion along and about the line.
Right: A spinning cone is affected by gravity but is constrained such that its end point, shown
in blue, does not move. Precession and nutation are observable in the movement of the centre
of mass, shown in green, and a point on the rim of the cone, shown in red.

6.8.4 Flat point constraint

Consider a so called ‘flat point’ bivector in CGA of the form:

D = d∧n∞−n∞∧n0

where d is a 3D vector. This object is invariant under the action of all rotation rotors about
the point d, but is not invariant to translation. Thus, under the action of the rigid body rotors
it behaves like a CGA 1-vector point. For PGA this constraint can again be implemented by
a standard PGA point.

6.8.5 Line constraint

A line is invariant to translation along the line and rotation about the line axis. Thus we
would expect to be able to support reaction forces orthogonal to the line, and moments with
axes orthogonal to the line axis, ie. F has 4 degrees of freedom. In PGA a line is a bivector
and is formed by the intersection of two planes, in CGA a line can be represented directly as
the wedge of two points and n∞ or dually as given in equation (6.2). Both the dual and direct
CGA form work fine for pinning.

138 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

Fig. 6.5 A physical pendulum moves under gravity and is constrained such that one end of it,
shown in blue, is always in contact with the surface of an object. The green trace shows the
midpoint of the pendulum and the red shows the free end. Left: a sphere. Right: a circle.

6.8.6 Circle constraint

A circle is invariant to rotation about the axis of the circle only. Thus we would expect to
be able to support reaction forces in all directions and all moments other than the one with
axis parallel to the circle axis, in other words F has 5 degrees of freedom. In retrospect
this should be unsurprising as the dual to a 3-vector CGA circle is an imaginary point-pair
bivector, and we have already seen that point-pairs have this same form of invariance.

6.8.7 Plane constraint

A plane is invariant to translation in plane and rotation about axes parallel to its normal
direction. Thus it can support one direction of force and two directions of moments giving 3
degrees of freedom to F . Both CGA and PGA can use planes for pinning.

6.8.8 Sphere constraint

A sphere is invariant to all rotation about its centre, but not to translation. Thus it acts like
a point at the sphere centre and F can support translation reaction forces only giving it 3
degrees of freedom. CGA can represent spheres directly as the outer product of 4 points. In
PGA this type of constraint would have to be enforced by pinning a point at the centre of the
sphere.

6.9 Pinning parametric multivectors paths 139

6.9 Pinning parametric multivectors paths

So far in our construction of multivector pinning constraints we have assumed that the objects
we are pinning are static in both the world and body frame. When working with constrained
dynamics in the real world we often want to pin parts of our rigid body to moving things
in the real world, such as a manipulator attached to the moving end-point of a robot, or a
flywheel fixed in a moving vehicle. Consider once again equation (6.19):

Ü = ¨̃RV R+2 ˙̃R(V̇ R+V Ṙ)+ R̃V̈ R+2R̃V̇ Ṙ+ R̃V R̈.

In the previous section we enforced static multivector constraints by setting U̇,Ü,V̇,V̈ to
zero, rearranging to isolate the R̈ terms and solving the resultant linear equation for Wb. Now
we will relax the static constraint and consider the cases when U,V are known time varying
multivector functions, ie when U̇,Ü,V̇,V̈ ̸= 0.

First note we can still rearrange to separate terms in R̈:

¨̃RV R+ R̃V R̈ =−2 ˙̃R(V̇ R+V Ṙ)− R̃V̈ R−2R̃V̇ Ṙ+Ü.

In fact, if we continue as in our previous analysis by breaking up R̈ as a function of Ω̇ and
extracting Wb:

¨̃RV R+ R̃V R̈ = (−1
2

˙̃
ΩR̃− 1

2
Ω̃

˙̃R)V R+ R̃V (−1
2

RΩ̇− 1
2

ṘΩ)

=−1
2

˙̃
ΩR̃V R− 1

2
R̃V RΩ̇− 1

2
Ω̃

˙̃RV R− 1
2

R̃V ṘΩ

= Ω̇× (R̃V R)− 1
2

Ω̃
˙̃RV R− 1

2
R̃V ṘΩ

= Q−1[Wb]× (R̃V R)+Q−1[˙̃RΨR+ R̃ΨṘ]× (R̃V R)− 1
2

Ω̃
˙̃RV R− 1

2
R̃V ṘΩ

= Q−1[F]× (R̃V R)+Q−1[S]× (R̃V R)+Q−1[˙̃RΨR+ R̃ΨṘ]× (R̃V R)− 1
2

Ω̃
˙̃RV R− 1

2
R̃V ṘΩ

and so:
(R̃V R)×Q−1[F] =−Ü +Q−1[S]× (R̃V R)+2 ˙̃R(V̇ R+V Ṙ)+ R̃V̈ R+2R̃V̇ Ṙ

+Q−1[˙̃RΨR+ R̃ΨṘ]× (R̃V R)− 1
2

Ω̃
˙̃RV R− 1

2
R̃V ṘΩ.

If we substitute U = R̃V R we have eventually got to a position where:

(U×Q−1[F]) = Some function of R,Ψ,U,U̇,Ü,V,V̇,V̈,S.

Again this is a linear function in F and so solvable as long as it is of sufficient rank.

140 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

What this means practically is that we can set U and V to follow any desired path we like
in their respective spaces and extract the reaction forces and moments acting on the body
that are required to keep them pinned to each other.

6.10 Pinning linear functions of parametric multivector
paths

In the previous two sections we dealt directly with transformations that pin static multivectors
or time varying multivector paths directly to each other in space. In many practical situations
what we would really like to pin is a linear function of one multivector to another. For
example we could pin the outer product of a point in the body frame and a plane in the world
frame to 0, effectively forcing them to be coincident without specifying anything about their
relative orientation (unlike in the transformed plane invariant case). Mathematically we can
express our linear function constraint as A[] and time derivatives as:

U = A
[
R̃V R

]
, U̇ = A

[
˙̃RV R+ R̃(V̇ R+V Ṙ)

]
,

Ü = A
[

¨̃RV R+2 ˙̃R(V̇ R+V Ṙ)+ R̃V̈ R+2R̃V̇ Ṙ+ R̃V R̈
]
.

Once again we can rearrange:

A
[

¨̃RV R+ R̃V R̈
]
= A

[
−2 ˙̃R(V̇ R+V Ṙ)− R̃V̈ R−2R̃V̇ Ṙ

]
+Ü

leading to an equation of the form:

A
[
(R̃V R)×Q−1[F]

]
= A

[
−((R̃V R)×Q−1[S])+Some function of R,Ψ,U,U̇,Ü,V,V̇,V̈

]
−Ü.

Again this is linear and solvable as before. Figure 6.5 shows the simulation with the Clifford
Python library [52] of two cases in which the linear function is the outer product with one
end of a physical pendulum.

6.11 Mapping Screw Velocity to Lie Algebra Velocity

Throughout this chapter so far we have represented the derivative of the state of the body
on the motor manifold as Ṙ. In practice numerical integration schemes which integrate Ṙ
will undoubtedly accumulate errors and so wander off the motor manifold. Depending on
the application this may or may not be a problem [9]. We can, however, nicely side step the
problem by directly mapping the velocity screw to a velocity in a suitable se(3) Lie algebra

6.11 Mapping Screw Velocity to Lie Algebra Velocity 141

that generates the rotor R. If we label the generator for the current position and orientation in
the Lie algebra as Φ which maps to the current rotor with a function Q then we are interested
in finding a function K that does the following:

R = Q(Φ), Φ̇ = K(Ω,Φ).

We will refer to this function K as the ‘kinematic equation’ for the given Lie algebra to Lie
group mapping and will have a look at its form for a few choices of Q.

6.11.1 Exponential Mapping and the Bortz Equation

One commonly used mapping for SE(3) is the exponential mapping:

R = eΦ.

Conveniently, the kinematic equation for the exponential mapping of the motor bivectors
has already been derived in [14] and a screw Lie algebra version in [89] and appears again
(with a corrected typo) at the end of Section 4.5 in [90]. The result in [89, 90] is derived via
idempotents and nilpotents of the adjoint matrix representation of the se(3) Lie algebra but it
is readily translatable into our own notation:

Φ̇ = Ωw +
1
2

Φ×Ωw +

(
2
|θ |2

+
|θ |+3sin |θ |

4|θ |(cos |θ |−1)

)
Φ× [Φ×Ωw]

+

(
1
|θ |4

+
|θ |+ sin |θ |

4|θ |3(cos |θ |−1)

)
Φ× [Φ× [Φ× [Φ×Ωw]]] (6.24)

where |θ |=
√

Ωw · Ω̃w.
The exponential se(3) kinematic equation is also the subject of Section 5.3 of Liam

Candy’s PhD thesis [14], and while the set up of the problem is certainly correct we were
unable to make their equation 5.41 work in our implementations. Suspecting simply a typo
somewhere in their derivations of the derivatives we can calculate the derivatives ourselves
and check the final result. We start with the following setup, following mostly along the lines
of [14]. Our objective is to calculate Φ̇ as a function of Φ and Ωb or Ωw. First, we note that
it is possible to write a motor bivector in the form:

Φ = αB+ tn∞ (6.25)

142 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

where B is a rotation bivector and t is a 3DGA vector. We then follow [14] choosing to define
two quantaties:

d = 2⟨RR̃α⟩2 ·n0, Ωb = Ωα + vn∞

where:
R = exp

−Φ

2
, Rα = cos

α

2
−Bsin

α

2

d∥ =
1
2
(d +BdB), d⊥ =

1
2
(d−BdB)

t = t⊥+ t∥, t⊥ = d⊥, t∥ =
d∥Rα

sinc α

2
=

αd∥Rα

2sin α

2

We can then write an expression for Φ̇ as the time derivative of (6.25):

Φ̇ = α̇B+αḂ+ ṫn∞.

This is made up of the following components:

α̇ =−B ·Ωα , Ḃ =
1
2

cot
α

2
(Ωα +(Ωα ·B)B)−

1
2
⟨BΩα⟩2

ṫ = ṫ⊥+ ṫ∥

where:

ṫ∥ =
α̇d∥Rα

2sin α

2
+

α ḋ∥Rα

2sin α

2
+

αd∥Ṙα

2sin α

2
+(αd∥Rα)

α̇ cos α

2
2(cosα−1)

ṫ⊥ = ḋ⊥ =
1
2
(ḋ− ḂdB−BḋB−BdḂ)

ḋ = 2⟨ṘR̃α +R ˜̇Rα⟩2 ·n0, ḋ∥ =
1
2
(ḋ + ḂdB−BḋB−BdḂ)

Ṙα =−1
2

RαΩα , Ṙ =−1
2

RΩb

If we restrict ourselves to so(3) these equations will produce the same answer as that of the
Bortz equation [7] familiar to practitioners from the field of strapdown inertial navigation.

6.11.2 Cayley Mapping

An alternative mapping to the exponential that is simple and potentially useful is the Cayley
mapping [55, 96]. For small rotations and translations the Cayley mapping approximates
the exponential however it diverges somewhat as we move further from the origin. Matrix
versions of the Cayley map are well known and the kinematic equations for the matrix

6.11 Mapping Screw Velocity to Lie Algebra Velocity 143

versions of this map have been studied before in the aeronautics literature [93]. We have
failed to find any previous attempts at the GA version of the kinematic equation however we
can reuse much of the logic of the matrix derivation, simply substituting transposes for tildes.
Start with the expression for the mapping:

R = (1−Φ)(1+Φ)−1, (6.26)

R(1+Φ) = 1−Φ.

Take the time derivative:
Ṙ(1+Φ)+RΦ̇ =−Φ̇.

Rearrange:

(1+R)Φ̇ =−Ṙ(1+Φ) =
1
2

ΩwR(1+Φ) =
1
2

Ωw(1−Φ).

Now we will seek a reformulation of 1+R:

1+R = (1+Φ)(1+Φ)−1 +(1−Φ)(1+Φ)−1

= (1+Φ+1−Φ)(1+Φ)−1 = 2(1+Φ)−1.

This allows us to write:

(1+R)Φ̇ = 2(1+Φ)−1
Φ̇ =

1
2

Ωw(1−Φ)

and so we are left with:
Φ̇ =

1
4
(1+Φ)Ωw(1−Φ). (6.27)

6.11.3 Outer Exponential Mapping

The final mapping that we will consider is the so called ‘outer exponential’ mapping as
presented in [96]. This mapping is defined as taking a Taylor series of the exponential but
replacing geometric products with wedge products, for an algebra with maximum grade 5 or
below this can be written as:

R = exp∧(Φ) =
1+Φ+ 1

2⟨Φ
2⟩4√

1−⟨Φ2⟩
. (6.28)

Again we were unable to find a GA kinematic equation for this mapping in the existing
literature and so present our own as follows. First we take a time derivative of the outer

144 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics

exponential:

R =
1+Φ+ 1

2⟨Φ
2⟩4√

1−⟨Φ2⟩
=

(
1+Φ+

1
2
⟨Φ2⟩4

)(
1−⟨Φ2⟩

)− 1
2

Ṙ =

(
Φ̇+

1
2
⟨Φ̇Φ+ΦΦ̇⟩4

)(
1−⟨Φ2⟩

)− 1
2 +

(
1+Φ+

1
2
⟨Φ2⟩4

)(
1
2
⟨Φ̇Φ+ΦΦ̇⟩

)(
1−⟨Φ2⟩

)− 3
2

=
Φ̇+ 1

2⟨Φ̇Φ+ΦΦ̇⟩4
(1−⟨Φ2⟩)

1
2

+
R1

2⟨Φ̇Φ+ΦΦ̇⟩
1−⟨Φ2⟩

.

Then, given that in (6.3) we have defined:

Ωw =−2ṘR̃ = 2R ˙̃R

we can therefore write:

Ωw =
−2
(
Φ̇+ 1

2⟨Φ̇Φ+ΦΦ̇⟩4
)

R̃

(1−⟨Φ2⟩)
1
2

− ⟨Φ̇Φ+ΦΦ̇⟩
1−⟨Φ2⟩

.

Noticing that:
⟨Φ̇Φ+ΦΦ̇⟩ ≡ 2⟨Φ̇Φ⟩

⟨Φ̇Φ+ΦΦ̇⟩4 ≡ 2⟨Φ̇Φ⟩4

and rewriting our equation for Ωw as:

(
1−⟨Φ2⟩

)
ΩwR =−2

(
1−⟨Φ2⟩

) 1
2

(
Φ̇+

1
2
⟨Φ̇Φ+ΦΦ̇⟩4

)
−⟨Φ̇Φ+ΦΦ̇⟩R

gives us: (
1−⟨Φ2⟩

)
ΩwR =−2

(
1−⟨Φ2⟩

) 1
2
(
Φ̇+ ⟨Φ̇Φ⟩4

)
−2⟨Φ̇Φ⟩R.

We can now equate grade 0 elements:

⟨
(
1−⟨Φ2⟩

)
ΩwR⟩=−2⟨Φ̇Φ⟩⟨R⟩

and so:

⟨Φ̇Φ⟩=
(
1−⟨Φ2⟩

)
⟨ΩwR⟩

−2⟨R⟩
.

6.12 Conclusions 145

We can also equate grade 2 elements:

⟨
(
1−⟨Φ2⟩

)
ΩwR⟩2 =−2(1−⟨Φ2⟩)

1
2 Φ̇−2⟨Φ̇Φ⟩⟨R⟩2.

This, after some rearrangement, leaves us with the form of the kinematic equation for the
outer exponential:

Φ̇ =

(
1−⟨Φ2⟩

)
⟨ΩwR⟩2 +2⟨Φ̇Φ⟩⟨R⟩2
−2(1−⟨Φ2⟩) 1

2

=

(
1−⟨Φ2⟩

)
⟨ΩwR⟩2

−2(1−⟨Φ2⟩) 1
2

+ ⟨Φ̇Φ⟩ ⟨R⟩2
−(1−⟨Φ2⟩) 1

2

=

(
1−⟨Φ2⟩

)
⟨ΩwR⟩2

−2(1−⟨Φ2⟩) 1
2

+

(
1−⟨Φ2⟩

)
⟨ΩwR⟩

−2⟨R⟩
⟨R⟩2

−(1−⟨Φ2⟩) 1
2

=−1
2
(1−⟨Φ2⟩)

1
2 ⟨ΩwR⟩2 +

(1−⟨Φ2⟩) 1
2 ⟨ΩwR⟩⟨R⟩2

2⟨R⟩
.

We can write this neatly as:

Φ̇ =
1
2

√
1−⟨Φ2⟩

[
−⟨ΩwR⟩2 +

⟨ΩwR⟩⟨R⟩2
⟨R⟩

]
. (6.29)

6.12 Conclusions

In this chapter we have looked at forces, moments, free and constrained dynamics in both
CGA and PGA. As well as considering how to apply virtual power as a constraint mechanism
in our GA formulations we have constructed a novel technique for constrained dynamics in
GA via the concept of multivector pinning. While in this chapter we have only considered two
algebras, CGA and PGA, the techniques are expected to work across the board for algebras
with easily representable line elements and motor bivectors. Using other higher dimensional
algebras such as Cl(4,4) [31], Cl(8,2) [33] or even Cl(9,6) [12] with this technique in the
future should allow for easy configurations of exotic constraints such as pinning dynamic
objects to the surface of quadrics.

Chapter 7

The Kinematics of Multi-body Systems in
Geometric Algebra

Wealth, beauty and fame are transient. When those are gone,

little is left except the need to be useful.
Gene Tierney

Abstract

Screw Theory is a framework for analysing articulated mechanisms and performing statics and
dynamics calculations that has found much success in the kinematic analysis of mechanisms.
In this chapter we consider the embedding of Screw Theory into another extremely powerful
framework for robotics, namely Geometric Algebra (GA). We start by rederiving well known
results for the accumulation of twists along kinematic chains within our GA framework before
turning our attention to the analysis of kinematic pairs. We derive an elegant representation
of kinematic pairs via bilinear functions of basic geometric primitives and use this to describe
the most common types of robotic joints. We then address multi-body systems and, using the
Delta robot as a case study, we compare the screw theoretic approach to a direct differentiation
method for extracting the Jacobians of the system.

7.1 Introduction

Modern manufacturing is increasingly mechanised and automated. The drive for automation
has led to a need for advanced modelling capabilities and many modern analysis frameworks

148 The Kinematics of Multi-body Systems in Geometric Algebra

have been developed as a result. Perhaps the most successful of these frameworks for the
analysis for 3D mechanisms is known as Screw Theory. Screw Theory is, unsurprisingly
perhaps, concerned with the study of ‘screws’. In its modern form Screw Theory was first
described by Sir Robert Stawell Ball in his ‘Treatise on the Theory of Screws’ [2], however
the mathematical roots that underlie this remarkable field come from Projective Geometry
[86] and the study of Lie groups and Lie algebras [89]. More recent proponents of Screw
Theory include Hunt [66], Selig [90], Davidson [20], Martins [97, 91], Featherstone [36],
Gallardo Alvarado [40], Pottmann [86], Minguzzi [79], Lipkin [77] and indeed many others.

Alongside the development of Screw Theory, and indeed building on some of the same
fundamental mathematics, we have seen the rise of the Clifford/Geometric Algebra (GA) as
a robotics modelling framework [70, 39, 69, 60, 101, 59, 1, 94]. With modern computing ca-
pabilities, the high level description of geometry that these algebras afford allows researchers
elegant, concise and coordinate-free descriptions of physically intricate mechanisms and
constraints. Many of the modern applications of GA are in the analysis of conformal [30] and
Euclidean motions [44], however there have been only a few attempts to properly embed the
tools of modern Screw Theory into GA [55, 96]. This chapter, along with the previous one,
is an attempt to lay out the overlap between the two fields with language and ideas familiar
to both Screw Theory and GA practitioners.

7.2 Geometric Algebra

In this chapter we will, by default, work with Conformal Geometric Alegbra (CGA). CGA
adds two more basis vectors, e and ē, to the original basis vectors of 3D Euclidean space,
giving a complete basis for the 5D space with the following signature: e2

1 = e2
2 = e2

3 = e2 = 1
and ē2 =−1. These extra basis vectors are used to define two null vectors: n∞ = e+ ē≡ n
and n0 =

ē−e
2 ≡−

n̄
2 – note that the (n, n̄) notation was that originally used when Hestenes

first introduced this model in [56]. The mapping from a 3D vector, x, to its corresponding
CGA vector, X , is given by:

X = F(x) =
1
2
(
x2n+2x− n̄

)
≡ 1

2
x2n∞ + x+n0. (7.1)

which is often referred to as: up(x) = X . We can invert this mapping quite easily so long as
we remember to normalise the CGA point such that X ·n∞ =−1:

x = F−1(X) = down(X) =
−(X ∧E0)E0

X ·n∞

7.2 Geometric Algebra 149

where E0 = n∞ ∧ n0. There are many excellent expositions on CGA in the literature and
so we will refrain from a lengthy introduction of all the features of the algebra in this
chapter, instead simply preferring to remind the reader of immediately relevant facts about
the framework as we go along. If the reader is looking for a more thorough coverage of
CGA we would recommend they turn to the excellent book Geometric Algebra for Computer
Science by Dorst, Fontijne and Mann [29].

One of the important sections of the CGA framework that this chapter will deal with is
the set of bivectors that form the generators of rotors that perform Euclidean motion, we
will refer to these bivectors as the motor bivectors. The motor bivector basis set contains
6 elements, reflecting the 6 degrees of freedom present in rigid body motion. A common
choice for the motor bivector basis in CGA is the following ordered set:

mi ∈ {e1I3,e2I3,e3I3,e1n∞,e2n∞,e3n∞}

where I3 represents the 3D pseudo-scalar e1∧ e2∧ e3. This set would have a corresponding
reciprocal frame as follows:

mi ∈ {−e1I3,−e2I3,−e3I3,e1n0,e2n0,e3n0}

such that mi ·m j = 1 if i = j and mi ·m j = 0 if i ̸= j. The full set of motor bivectors is then a
linear combination of this motor bivector basis. Introducing 6 scalar parameters γi we can
write a general motor bivector T as:

T =
6

∑
i=1

γimi.

An alternative and increasingly popular GA framework to work in is the Plane-based or
Projective Geometric Algebra (PGA) [28, 44]. This algebra has signature Cl(3,0,1), meaning
it has 3 basis vectors that square to +1, 0 basis vectors that square to −1 and one null basis
vector that squares to 0. It is a subalgebra of CGA that contains only the ‘flat’ elements
and the Euclidean rotors [73, 65]. Restricting the algebra in this way is useful for certain
applications that do not require the round elements of CGA and especially as the reduced
dimensionality can produce significant speedups for some numerical packages. PGA also
contains the motor bivectors with its null basis vector, e0 taking the place of n∞. Due to its
degenerate signature PGA cannot use reciprocal frames in the same way as CGA but this
restriction can be neatly sidestepped via pseudo-reciprocal frames as described in [43] and
explicitly worked through for the motor bivectors in Chapter 6. While PGA is not a direct
focus of this specific chapter a sharp eyed reader will note that almost all of the formulae in

150 The Kinematics of Multi-body Systems in Geometric Algebra

the Screw Theory framework developed here will work with no, or only minor, modifications
in PGA.

Whichever GA you choose, the motor bivectors, when exponentiated, produce rotors that
can implement rigid body motions. In general it is possible to split T into two commuting
bivectors, one a generator of rotational motion about a line in the world and one a generator
of translational motion along that line. This combination of rotational and translational
motion leads to the identification of the motor bivectors as ‘screws’ and if we were to take
the 6 scalar parameters γi and arrange them in a 6x1 vector we would get the vector space
that is the core subject matter of the field of Screw Theory. This chapter is one of a pair
which focus on the embedding of Screw Theory into GA and is the less theoretical of the
two, here we will remind readers of any information from the previous chapter when needed
but will focus more on the practical realities of using Screw Theory ideas in GA.

7.3 Twists in Kinematic Chains

Consider a rigid body i. The rotor Ri transforms between the world frame and an arbitrary
frame fixed to, but not principal axis aligned with, the body. Specifically it transforms objects
from the fixed frame to the world frame. The rotor Vi then transforms from a fixed principal
axis aligned frame to that arbitrary fixed frame. The combined rotor that transforms directly
from the principal axis aligned frame to the world frame is written Si. Consider another body,
j, again with a rotor R j from fixed frame to world frame, Vj from principal axis aligned
fixed frame to arbitrary fixed frame and S j from principal axis aligned fixed to world frame .
Figure 7.1 shows a visual depiction of this. The rotor that transforms between fixed frames
of limb i to limb j is labelled Ri j:

Ri jRi = R j. (7.2)

Using ∼ to represent the standard geometric algebra reversion operator we can write:

Ri j = R jR̃i. (7.3)

Now imagine that these bodies form part of a jointed kinematic chain with a sequence of
limbs. The position and orientation of each limb relative to the world origin is defined by the
rotor Si, which can in turn be written Si = RiVi.

Each of the fixed frames attached to the limbs has a combined rotational and translational
velocity in the world frame that we can represent as a motor bivector which we will label Ωi.
These motor bivectors representing combined rotational and translational velocity are known
in the Screw Theory literature as a ‘velocity screw’ or a ‘twist’. From standard results we

7.3 Twists in Kinematic Chains 151

O

Ri

Vi

Rj
Vj

Si

Sj
Fig. 7.1 Rigid body i is shown in blue. Rotor Vi transforms from a fixed principal axis aligned
frame to an arbitrary frame fixed to the body. Rotor Ri transforms from the arbitrary fixed
frame to the world frame and rotor Si transforms directly from the principal axis aligned
body frame to the world frame. Likewise for body j shown in green.

152 The Kinematics of Multi-body Systems in Geometric Algebra

know we can write the time derivative of these rotors as:

Ṡi =−
1
2

ΩiSi. (7.4)

We can decompose this rotor into Ri and Vi:

Ṡi =−
1
2

ΩiRiVi. (7.5)

We can also explicitly take the time derivative of Si, which simplifies as V̇i = 0 due to both
body frames being fixed relative to one another:

Ṡi = ṘiVi +RiV̇i = ṘiVi. (7.6)

This implies:

ṘiVi =−
1
2

ΩiRiVi. (7.7)

If we right multiply by Ṽi we can see that Ωi is the bivector velocity of both Si and Ri:

Ṙi =−
1
2

ΩiRi. (7.8)

This should not surprise us as both body frames are fixed to one another.
Taking the time derivative of equation (7.2) leads to a formula relating the relative velocity

screws of the body in the chain:

Ṙi jRi +Ri jṘi = Ṙ j (7.9)

−1
2

Ωi jRi jRi−
1
2

Ri jΩiRi =−
1
2

Ω jR j (7.10)

−1
2

Ωi jR j−
1
2

Ri jΩiR̃i jR j =−
1
2

Ω jR j (7.11)

Ωi j +Ri jΩiR̃i j = Ω j. (7.12)

This is a potentially convenient result but there is a particular case that proves to be of
special interest. Our results so far are not a function of the rotors Vi at all, just of Ri. We could
choose any decomposition of Si into Ri and Vi at a given time point and our equations will
still be valid. The special case we will concentrate on is to choose to instantaneously align the
fixed frames with the world frame, in other words we choose at this instant: Ri = 1, Vi = Si

7.4 Geometrically Constrained Kinematic Pairs 153

and therefore Ri j = 1. Under these conditions equation (7.12) simplifies to the following:

Ωi j +Ωi = Ω j. (7.13)

This equation is particularly convenient if we are able to measure the relative velocity screw
of one limb with respect to another as we can simply accumulate the relative limb velocities
along the chain to arrive at the final global limb velocity screw with respect to the world
frame. This is well known in traditional Screw Theory and forms the basis of many practical
techniques for analysing robots.

A direct result of the definition of Ω is that the time derivative of a geometric object X is
given by the commutator product of the object with Ω:

Ẋ =
1
2
(XΩ−ΩX) = X×Ω. (7.14)

This is a particularly helpful result as it allows us to define geometry associated with our
kinematic chains and calculate how they evolve through time as the kinematic chain moves.

7.4 Geometrically Constrained Kinematic Pairs

Consider a pair of adjacent limbs, i and j, in a kinematic chain. These two limbs are
connected by some form of joint and together they are known as a kinematic pair [87].
Exactly how they are constrained to move relative to one another is defined by the type of
joint. Let us first consider a specific type of joint, one defined by shared geometry.

In a shared geometry joint there exists a piece of geometry, which we will label X , that is
fixed relative to both frames in the kinematic pair. Practically what this means is that when
acted on by the velocity of i or j this object X must have the same Ẋ , or more formally:

Ẋ = X×Ωi = X×Ω j. (7.15)

Due to the linearity of the commutator product we can write this as:

0 = X× (Ωi−Ω j) =−X×Ωi j. (7.16)

This is an extremely useful result. The quantity Ωi j is the relative velocity screw of one limb
relative to the other and the restriction of its commutator with X being zero means that
the shared geometry of the joint must be invariant to the effect of the relative velocity.

154 The Kinematics of Multi-body Systems in Geometric Algebra

We can represent many types of joint as shared geometry joints, or combinations of shared
geometry joints. In practice however we often want to represent slightly more complex joints
compactly. In many commonly used GA frameworks we can represent more advanced types
of joint with some form of bilinear mapping between two relevant objects, one in each frame,
that we know remains constant for the joint geometry. More formally, for an object X in
frame i and an object Y in frame j:

B(X ,Y) = H (7.17)

where H is a multivector that is constant for the joint, and in many cases is simply 0. Taking
time derivatives once again gives us a linear constraint on Ωi and Ω j:

B(Ẋ ,Y)+B(X ,Ẏ) = 0, (7.18)

B((X×Ωi),Y)+B(X ,(Y ×Ω j)) = 0. (7.19)

So far at no point have we specified what objects X and Y are, nor the form of the bilinear
mapping B (7.17). In practice, common forms of B include the outer product:

X ∧Y = 0, (X×Ωi)∧Y +X ∧ (Y ×Ω j) = 0

the inner product:
X ·Y = 0, (X×Ωi) ·Y +X · (Y ×Ω j) = 0

and the meet taken with respect to a specific fixed subspace:

X ∨Y = 0, (X×Ωi)∨Y +X ∨ (Y ×Ω j) = 0.

7.5 The Geometry of Real Joints

It is all well and good to state some neat theoretical results but it is more useful to robotics
practitioners to outline how to describe actual joints in our framework. A good place to start
is with the most common types of kinematic pair.

7.5.1 Spherical Joint

A spherical joint, often known as a ball joint, is one in which two bodies are free to move
about a single common fixed point. Often in practice these joints are implemented with one
body designed to have a spherical cavity (known as the socket) and another with a ball on the

7.5 The Geometry of Real Joints 155

end which is held captive within the socket. To implement a spherical joint within our shared
geometry constraint we can use a sphere shared between both bodies in the kinematic pair.
The sphere can be of any radius and in many practical applications (and in some GAs which
do not naturally embed non-zero radius spheres as objects, such as PGA) it makes sense to
use a sphere of zero radius, or, in other words, a point.

7.5.2 Cylindrical Joint

A cylindrical joint is a mechanism that allows two bodies to translate parallel to a shared
axis and rotate about the same axis simultaneously. In practice this joint appears often as a
cylindrical cuff free to slip over and around a rod. To implement the cylindrical joint within
our framework we can use the geometry of a shared line. A line is invariant to rotation about
its axis and translation along its axis. In CGA we can use a line either in its trivector form as
the direct wedge product of two conformal points and n∞, A∧B∧n∞ or in its bivector form
m̂I3− (p∧ m̂)I3n∞ which is equivalent to the PGA line formulation m̂I3− (p∧ m̂)I3e0 where
m̂ is the direction of the line and p is a point on the line.

7.5.3 Planar Joint

A planar joint is one that allows two bodies to slide over one another in a specific plane of
motion and rotate about the normal to that plane. An example of this in the real world would
be a wheeled trolley that is free to move in any direction on a flat surface. To implement the
planar joint within our framework we can use a shared plane between the kinematic pairs.
Again in CGA this can be done with either a 4-vector plane, A∧B∧C∧n∞, or with a dual
1-vector plane m+dn∞ which is again the same as the PGA plane m+de0 where m is the
normal to the plane and d is the distance of the plane from the origin.

7.5.4 Revolute Joint

A revolute joint, also known as a pin joint or hinge joint, is one that allows rotation about
an axis but, unlike the cylindrical joint, does not allow translation parallel to the axis. The
revolute joint is one of the most common mechanical joints in use in the wild and so having
a convenient mechanism to handle it is important. To implement a revolute joint within our
framework with CGA we can use a shared circle. A circle is invariant only to rotation about
the axis passing through its centre and normal to the plane in which it lies. The radius of this
circle is again arbitrary and choices of zero radius, or radius appropriate to the mechanical
proportions of the robot at hand, are likely reasonable. In CGA this circle comes in the form

156 The Kinematics of Multi-body Systems in Geometric Algebra

of a trivector A∧B∧C or in the form of the bivector dual to that. In CGA a point-pair P1∧P2

that is aligned with the axis can also be used.

7.5.5 Prismatic Joint

A prismatic joint is one in which two bodies are constrained to move relative to one another
parallel to a fixed line without any rotation. The prismatic joint is the first of the classic
robotic joints that we cannot represent with a single geometric primitive in 3D conformal GA.
Instead we are forced to use some form of compound constraint. There are several options
here, two parallel line constraints, a line and a plane constraint, a line and a direction bivector
constraint and two planar constraints are all constructs that would work.

7.5.6 Universal Joint

A universal joint is a mechanism which consists of two orthogonal revolute joints with axes
that are incident at a fixed point. It is often used to transmit rotational motion between two
shafts whose axes are not parallel but are incident.

We can represent a universal joint in our framework as a joint consisting of two equal
radius circles. The planes of these circles must lie orthogonal to each other and both circles
must have the same centre point. If we choose two circles, X and Y , the orthogonality
constraint can be written as X ·Y = ⟨XY ⟩0 = 0 and the same centre point constraint for circles
of the same radius can be written ⟨XY ⟩4 = 0 [48]. We can combine these constraints neatly
with the anti-commutator product

X×̄Y =
1
2
(XY +Y X).

When operating on two circles, the anti-commutator product produces grade 0 and grade
4 elements only. Using this notation and taking derivatives our kinematic constraint can
therefore be described as:

(X×Ωi)×̄Y +X×̄(Y ×Ω j) = 0. (7.20)

Of course we could have chosen to model this joint with two revolute joints and an
additional body to represent the internals of the joint but this would introduce additional and
unnecessary variables into our problem definition.

7.6 The Kinematic Constraint Matrix and the Jacobian Matrix 157

7.6 The Kinematic Constraint Matrix and the Jacobian
Matrix

So far we have only looked at individual kinematic pairs, we will now address full multi-body
systems. For an articulated robot with N limbs we write the velocity state as:

T =

Ω1

Ω2

...

ΩN

 (7.21)

For a system with M constraints, there exists an M×N matrix C with linear functions as
elements that embodies the combination of all the linear constraints on the velocity state. C
acts on the velocity state giving a result of M zero valued multivectors:

0 =CT. (7.22)

We will name C the kinematic constraint matrix and readers familiar with the Screw Theory
literature will recognise it as a cousin of Davies’ method [21]. We can choose some ordered
L dimensional basis in which to represent the multivectors Ωi in which case T becomes an
NL×1 dimensional vector, C becomes an ML×NL dimensional matrix and the zero vector
is ML×1 dimensional. To find the various coefficients of C we can simply set each of the
coefficients of T to 1 in turn and all the rest to zero and calculate the output of each of our
constraints for that input, calculating its output representation in the chosen multivector basis.

Consider a robot with velocity state T , now specify some of the limbs as inputs, with
known Ω and some of the limbs as outputs with unknown Ω. We can write this as follows:

T = Tk +Tu (7.23)

where the subscripts k and u refer to known and unknown Ω respectively. By linearity,
applying the constraint matrix produces:

0 =CT =CTk +CTu,

CTu =−CTk. (7.24)

This is in the standard form Ax = b and can be solved with the pseudo-inverse in our chosen
basis to produce a valid set of unknown limb velocities given the set of known velocities.

158 The Kinematics of Multi-body Systems in Geometric Algebra

Designating a linear map K from the input degrees of freedom, x, to the known velocities
of the system, and a linear map U from the unknown velocities to the output degrees of
freedom, y, allows us to calculate a matrix that is equivalent to the Jacobian matrix of the
system:

Tk = K(x), U(Tu) = y,

y = (−UC+CK)x (7.25)

where C+ is the pseudo-inverse of C.
The matrix C+C describes the relationship between the known and unknown twists and,

so long as we can form the various components of equation (7.25) we should be able to use
this Screw Theory inspired framework to calculate the Jacobian matrix for any robot whose
joints can be modelled using the bilinear mappings of Section 7.5.

7.7 Case Study: The Delta Robot

The Delta robot [17, 16] was invented in 1985 by Raymond Clavel at EPFL after being
inspired by a visit to a chocolate packing factory [82]. It has since become a particularly
popular robot in industrial settings due to its good precision coupled with high speed and
acceleration.

The Delta robot is a specific type of robot known as a parallel manipulator. Parallel
manipulators, also known as parallel robots, are a class of robots that feature end-effectors
driven by multiple underactuated parallel kinematic chains [40, 78]. Typically a parallel robot
is designed such that all actuators remain fixed to the support structure of the robot thereby
minimising the mass of the moving parts of the robot and enabling very fast accelerations.
Indeed this goal of high speed/fast acceleration has been the primary driving force in the
development of parallel robots for industry and today architectures such as the Delta robot
are widespread in many high precision, high throughput manufacturing applications. Parallel
robots, while practically very useful, are often significantly more difficult to analyse than
their serial cousins due to the end-point position being a function of the configuration of
multiple kinematic chains.

Here we will do a case study of the Delta robot, analysing it with Geometric Algebra,
calculating Jacobians with our Screw Theory based framework, and then finally comparing
our screw theory setup with a direct differentiation approach to get the Jacobians.

7.7 Case Study: The Delta Robot 159

Fig. 7.2 Left: the 3D geometry of the delta robot. Right: The geometry of a single arm in
plane.

7.7.1 Geometry of a Delta Robot

Since its inception, there have been many variants of the Delta robot [85]. In this chapter we
will assume the simple robot described in this section and illustrated in Figure 7.2. The static
part of the robot is a base plate to which three motors are rigidly attached, we will assume a
space in which the origin is at the centre of this plate. Each motor shaft is rigidly attached to
an ‘upper arm’ of length l; we will number each upper arm i ∈ [1,2,3]. The connection point
of the motor and upper arm will be labelled Bi. The arm can only rotate in plane about the
motor axis as the motor shaft and upper arm are rigidly connected. We will refer to the other
end of this upper arm as the ‘elbow point’ and will label it Wi. At the elbow point each arm
is rigidly attached to a central point of a horizontal rod we will refer to as the ‘elbow rod’. At
each end of the elbow rod a ball joint connects to a ‘forearm’ piece. The two forearm pieces
for each arm are the same length and, at the other end from the elbow rod, are connected to a
rigid plate that we will refer to as the end-effector plate. The point half-way between where
the two forearm rods connect to the end-effector plate is labelled Xi. We will label the point
at the centre of the end-effector plate Y . Assuming the robot is infinitely stiff, the end plate is
constrained, due to this specific arrangement of the forearms, to always remain parallel to the
base plate and to have its in-plane orientation fixed as well. The Delta robot is therefore a
purely translational mechanism.

160 The Kinematics of Multi-body Systems in Geometric Algebra

Fig. 7.3 The geometry of the inverse kinematic problem. There are three spheres, one for
each arm of the robot, centred at the conformal points Xi. Each sphere intersects with a circle
centred at Bi allowing the extraction of the conformal elbow point Wi.

7.7.2 Calculating the Robot Pose

The first task in analysing the Delta robot is to calculate its pose for a given set of inputs.
Typically we are attempting to map from the end-effector to the actuators (inverse kinematics)
or from the actuators to the end-effector (forward kinematics). Along the way we are
interested in the positions of the limbs and joints that define the physical structure of the
robot. To solve these pose calculation problems for the Delta robot initially we will use a
simplified geometry for each leg.

Inverse Kinematics

The inverse kinematic problem for the Delta robot is summarised as follows: To what
angle relative to the base should we move the upper arms given we want the centre of the
end-effector plate to be in a specific position in 3D space?

To solve this problem we need to work backwards from the 3D end-effector plate position
y to the motor angles θi considering the geometry of the robot as we go. Starting at the
end-effector plate the 3D points xi are translationally offset in plane in the direction si giving

7.7 Case Study: The Delta Robot 161

xi = y+ resi where re is the radius of the end-effector plate. Due to the geometry of the robot
the elbow point Wi is constrained to lie on a sphere with radius equal to the length of the
forearms ρ centred at this point xi. We can write the dual form of this sphere as:

Σ
∗
i = Xi−

1
2

ρ
2n∞.

The elbow point is also simultaneously constrained to lie on a circle of radius l centred at
the motor shaft to upper-arm joint, Bi. We can represent this circle in its dual form C∗i in
CGA, where Ci is the intersection of a sphere of radius l centred at the position Bi, with
dual form

(
Bi− 1

2 l2n∞

)
, and the plane through the origin, Bi and e3 which has dual form

I3(si∧ e3). Here e3 is the vertical unit vector and for the most common orientation of a delta
robot, points vertically downward from the base plate. In CGA we calculate the intersection
of objects via the ‘meet’ operator, as both operands are in their dual form however, here we
simply need an outer product:

C∗i =

(
Bi−

1
2

l2n∞

)
∧ (I3(si∧ e3)).

So long as y is within the reachable volume of the robot there are two possible solutions for
this pair of constraints. These two solutions lie at the intersection points of the sphere and
circle and the ‘meet’ operation of CGA provides us with a direct means to calculate these
intersection points. The sphere and circle are in the dual form (1 and 2-vectors respectively),
and so the point-pair bivector resulting from their meet is calculated as simply their outer
product followed by multiplication with the 5D pseudo-scalar, I5:

Ti = (C∗i ∧Σ
∗
i)I5.

The desired individual solution can be extracted from this point-pair object by relying on the
oriented nature of the algebra and relying on a projection operator [76]:

Pi =
1
2

1+
Ti√
T 2

i

 ,

Wi =−P̃i(Ti ·n∞).

We can then convert from the CGA to the 3D vector point:

wi = down(Wi)

162 The Kinematics of Multi-body Systems in Geometric Algebra

and so, with a little trigonometry we can extract the motor angles:

θi = atan2(zi · e3,zi · si), zi = wi− rbsi

where rb is the radius of the base-plate. Figure 7.3 illustrates the geometry of the inverse
kinematic problem graphically. As mentioned we have relied on the oriented nature of the
algebra to extract the solution of interest from the point-pair. This solution has the elbow
position being as far from the e3 axis as possible and is normally the only feasible position
of the elbow in a real Delta robot as the other typically causes self intersection. If the other
solution is desired the same projection formulae can be used, simply substituting T̃i for Ti.

Forward Kinematics

The forward kinematic problem is, in some sense, the opposite of the inverse kinematic one.
Our goal here is to calculate the 3D vector position of the end-effector plate y given the motor
angles θi, i ∈ [1,2,3].

To solve the forward kinematic problem we will consider the robot one arm at a time. For
a given arm motor angle θi the 3D position of the elbow point wi can be calculated as:

wi = (rb + l cos(θi))si + l sin(θi)e3.

For each arm we will now define a pseudo-elbow point, ai which is offset horizontally from
the true elbow point by the radius of the end effector plate and in the direction of the origin.

ai = (rb− re + l cos(θi))si + l sin(θi)e3.

The equivalent CGA point is then:

Ai =
1
2

a2
i n∞ +ai +n0.

Given the geometry of the robot, these pseudo-elbow points all lie a distance equal to the
length of the robot’s forearms, ρ , from the centre of the end-point plate Y . Geometrically
these fixed distance constraints manifest themselves as spheres, which we will label Σi, on
which the centre of the end-point plate can lie:

Σ
∗
i = Ai−

1
2

ρ
2n∞.

7.7 Case Study: The Delta Robot 163

Fig. 7.4 The geometry of the forward kinematic problem. Each motor connects to an upper
arm at position Bi. The upper arms end in the elbow point Wi. Each elbow point has an
associated pseudo-elbow point Ai and forearm constraint sphere. All three constraint spheres
meet at the centre of the end-point plate, Y .

Each arm contributes one constraint sphere and the intersection of the three spheres produces
a point-pair, T , that represents the two possible configurations of the end-plate:

T = I5

i=3∧
i=1

Σ
∗
i

where the
∧

notation implies an outer product of all elements following it.
Practically only one of these possible solutions is feasible, the solution which places Y

at a greater position along the e3 axis. As we have been careful throughout our equations
to ensure our signs are correct we can exploit the oriented nature of CGA to extract the 3D

164 The Kinematics of Multi-body Systems in Geometric Algebra

position of this point, y with the use of a single projector:

P =
1
2

(
1+

T√
T 2

)
,

y = downY, Y =−P̃(T ·n∞).

Figure 7.4 illustrates the geometry of the forward kinematic problem.

7.7.3 Full Geometry and Kinematic Constraint Matrix of the Delta
Robot

Knowing static kinematic solutions is useful but to do more advanced analysis of the Delta
robot mechanism we need to look at velocities. Given we have, up to this point, simplified
the pose of the robot in both the forward and inverse cases, we will turn our attention to
analysis of the full geometry and possible movements of the limbs. First we will do our
analysis with our Screw Theory based framework and then we will compare it with a direct
differentiation approach.

Looking at the Delta robot there are two types of joint present. The motor shaft to motor
body connection is a revolute joint, the arm to arm connections are spherical joints, and
the arm to end-effector platform are also spherical joints. The revolute joints of each motor
connection can neatly be represented by a piece of shared geometry, namely a circle with
normal parallel to the motor axis. Any radius of circle could be chosen, however as the limbs
attached to the motor have a length of l it makes sense for us to use a radius of l for our circle.
We will label these circles P1,P4,P7 and we can construct them identically to those in section
7.7.2:

P1 =C∗1 =

(
B1−

1
2

l2n∞

)
∧ (I3(s1∧ e3)),

P4 =C∗2 =

(
B2−

1
2

l2n∞

)
∧ (I3(s2∧ e3)),

P7 =C∗3 =

(
B3−

1
2

l2n∞

)
∧ (I3(s3∧ e3)).

The remaining joints are all spherical/ball joints and can therefore be conveniently represented
by shared spheres. Again, the radius of these spheres is irrelevant. In this case we will choose
a radius of zero, which makes the shared spheres into shared points. We will label each of the
limbs of the Delta robot according to the diagram in Figure 7.6. According to this labelling

7.7 Case Study: The Delta Robot 165

scheme we then have the following mapping from simplified to full robot geometry:

P2 = up(downW1 + rta) ,

P3 = up(downW1− rta) ,

P5 = up(downW2 + rtb) ,

P6 = up(downW2− rtb) ,

P8 = up(downW3 + rtc) ,

P9 = up(downW3− rtc) ,

P10 = up(downX1 + rta) ,

P11 = up(downX1− rta) ,

P12 = up(downX2− rtb)

where:

rt =
re

tan(π/6)
,

a =−(s1∧ e3)I3, b =−(s2∧ e3)I3, c =−(s3∧ e3)I3.

due to the geometry of the end plate as shown in Figure 7.5.

Yre

X1 X2

X3

rt

P10

P11

P12

π

6

Fig. 7.5 The geometry of the end plate allows us to convert from the simplified end plate
geometry X1,X2,X3 to the full end plate geometry P10,P11,P12.

For the motor shaft connections the circles are shared between the fixed world and the
arm pieces. As it is fixed, the velocity screw of the world ΩW is 0. Considering equation
7.16 we can substitute in our circles Xi, for X and 0 for ΩW :

0 = Xi× (ΩW −Ωi) =−Xi×Ωi. (7.26)

166 The Kinematics of Multi-body Systems in Geometric Algebra

P
2

P
3

P
1

Ω
1

Ω
2

Ω
3

P
10

Ω
10

Motor

Lower Arms

Shaft

Upper Arm

P
11

P
12

P
11

P
4

P
5

P
6

Ω
4

Ω
7

P
7

P
8P

9

Ω
5

Ω
9

Ω
6

Ω
8

Fig. 7.6 A diagrammatic representation of the Delta robot and the relevant objects and screw
quantities.

7.7 Case Study: The Delta Robot 167

Putting this together with the shared point ball joints the full set of kinematic constraints for
the Delta robot are as follows:

0 = P1×Ω1,

0 = P4×Ω4,

0 = P7×Ω7,

0 = P2× (Ω2−Ω1),

0 = P3× (Ω3−Ω1),

0 = P5× (Ω5−Ω4),

0 = P6× (Ω6−Ω4),

0 = P8× (Ω8−Ω7),

0 = P9× (Ω9−Ω7),

0 = P10× (Ω10−Ω2),

0 = P11× (Ω10−Ω3),

0 = P11× (Ω10−Ω5),

0 = P12× (Ω10−Ω6),

0 = P12× (Ω10−Ω8),

0 = P10× (Ω10−Ω9).

The forward kinematic problem has known input velocities Ω1,Ω4,Ω7 and output velocity
Ω10. The inverse kinematic problem has known input velocity Ω10 and output velocities
Ω1,Ω4,Ω7.

7.7.4 From Constraint Matrix to Jacobian Matrices

In order to convert from a constraint matrix to a Jacobian matrix we will need to define the
linear maps mentioned in Section 7.6, K that maps from the input degrees of freedom to the
known velocities, and U that maps from the unknown velocities to the output degrees of
freedom. We will start by defining three normalised lines L̂1, L̂4, L̂7 whose dual forms are
directly proportional to the twists Ω1,Ω4,Ω7. These lines are proportional to the twists as
they are the axes about which pivot the limbs attached to the motors. We can form these lines
from the dual circles P1,P4,P7:

L1 = P1∧n∞, L4 = P4∧n∞, L7 = P7∧n∞,

168 The Kinematics of Multi-body Systems in Geometric Algebra

L̂∗1 =
L1I5√
−L1L̃1

, L̂∗4 =
L4I5√
−L4L̃4

, L̂∗7 =
L7I5√
−L7L̃7

.

With these dual lines we can map between the motor angular speeds θ̇1, θ̇2, θ̇3 and the twists
Ω1,Ω4,Ω7.

Ω1 = θ̇1L̂∗1, Ω4 = θ̇2L̂∗4, Ω7 = θ̇3L̂∗7.

For the forward kinematic problem we therefore can construct a map KF as follows:

Ω1

...

Ω4

...

Ω7

...

=

L∗1 0 0
...

0 L∗4 0
...

0 0 L∗7
...

θ̇1

θ̇2

θ̇3

and as (L∗1)
2 = −1 for the inverse kinematic case we can construct UI from negative the

transpose of KF , UI =−KT
F .

At the end-effector in the forward kinematic problem we need to get the translational
effect of Ω10 on the central point of the end-plate, we therefore need to calculate ẏ. Given
we have already calculated Y , getting ẏ is a relatively straightforward task. First, we form
the line Y ∧ Ẏ ∧ n∞ which has the orientation and magnitude of ẏ, then we extract the 3D
direction and magnitude from this line. To extract the 3D element we can use the dual form
of the line and extract the euclidean bivector components which when multiplied with the
negative 3DGA pseudoscalar gives the direction of the line. Or, symbolically:

L∗ = (Y ∧ (Ω10×Y)∧n∞)I5,

ẏ =−(L∗∧E0)E0I3.

This is a general method to extract the linear velocity of a point from the CGA point and
its velocity screw. In the case of the Delta robot of course we know that the end-plate is
constrained to move only translationally and so Ω10 will be a purely translational bivector of
the form −ẏ∧n∞. We can therefore extract ẏ directly from Ω10:

ẏ = n0 ·Ω10.

To turn ẏ into individual components we can simply dot it with each basis vector in turn
ẏe1 = ẏ · e1 etc.

7.7 Case Study: The Delta Robot 169

With this in mind we can now construct the known input map for the inverse problem KI: ...

Ω10

...

=

−e1∧n∞ −e2∧n∞ −e3∧n∞

...

ẏe1

ẏe2

ẏe3

and the unknown output map for the forward problem U f :ẏe1

ẏe2

ẏe3

=

... e1 · (n0 · []) ...

... e2 · (n0 · []) ...

... e3 · (n0 · []) ...

 ...

Ω10

...

7.7.5 Calculating the Jacobian with Direct Differentiation

The Inverse Jacobian

For our direct differentiation method we will start with our simplified inverse kinematic
solution and simply differentiate the expressions directly.

First we will write the 3D end-point plate position as a linear combination of basis vectors
with coefficients denoted α j, j ∈ 1,2,3:

y = α1e1 +α2e2 +α3e3.

Our goal is to calculate the partial derivative of each motor angle with respect to each of
these α coefficients. Taking partial derivatives of y with respect to one of the α j coefficients
trivially gives:

∂y
∂α j

= e j.

For now we do not need to worry about which α parameter we are taking derivatives with
respect to, so we will leave the derivative of the end-point written as ∂y

∂α
. Using this notation,

our ultimate goal in this section is to find an equation for the partial derivative of a given
motor angle θi with respect to α , ∂θi

∂α
. To find ∂θi

∂α
we select a specific robot arm i and work

back through its joints from the end-point.
The first joint position of interest is xi, we saw in section 7.7.2 that:

xi = y+ resi.

170 The Kinematics of Multi-body Systems in Geometric Algebra

Taking partial derivatives gives:
∂xi

∂α
=

∂y
∂α

.

The 3D point xi can then be represented as the CGA point Xi:

Xi =
1
2

x2
i n∞ + xi +n0.

The derivative of this CGA point is then easily found:

∂Xi

∂α
=

(
∂xi

∂α
· xi

)
n∞ +

∂xi

∂α
.

We then form the dual constraint sphere:

Σ
∗
i = Xi−

1
2

ρ
2n∞

which, as the radius is fixed, has partial derivative:

∂Σ∗i
∂α

=
∂Xi

∂α
.

As we saw in the previous section, the intersection of this dual constraint sphere Σ∗i and the
dual circle C∗i centred on the motor shaft produces a point-pair Ti that represents the two
possible elbow positions for that arm:

C∗i =

(
Bi−

1
2

l2n∞

)
∧ (I3(si∧ e3)),

Ti = (Σ∗i ∧C∗i)
∗.

The outer product and dual operations are both linear, which means that taking derivatives is
particularly easy here:

∂Ti

∂α
=

(
∂Σ∗i
∂α
∧C∗i

)∗
.

7.7 Case Study: The Delta Robot 171

Of course the elbow can only actually be in one position which we can extract via a projection
operation:

Pi =
1
2

1+
Ti√
T 2

i

 ,
∂Pi

∂α
=

1
2T 2

i

√T 2
i

∂Ti

∂α
−Ti

∂Ti
∂α
·Ti√
T 2

i

 ,

Wi =−P̃i(Ti ·n∞),

∂Wi

∂α
=−∂ P̃i

∂α
(Ti ·n∞)− P̃i

(
∂Ti

∂α
·n∞

)
.

We can then convert from the CGA to the 3D vector point:

wi =
−(Wi∧E0)E0

Wi ·n∞

,

∂wi

∂α
=
−(∂Wi

∂α
∧E0)E0(Wi ·n∞)+(Wi∧E0)E0(

∂Wi
∂α
·n∞)

(Wi ·n∞)2

and use this to form the derivative of the motor angles with respect to α:

zi = wi− rbsi,
∂ zi

∂α
=

∂wi

∂α
,

θi = atan2(zi · e3,zi · si),

∂θi

∂α
=

zi · si

|zi · si|

(zi · si)
(

∂ zi
∂α
· e3

)
− (zi · e3)

(
∂ zi
∂α
· si

)
z2

i
.

This finally gives us an expression for the derivative of the motor angle with respect to the
α of the endpoint. Typically in engineering scenarios we would construct a matrix of the
partial derivatives with respect to α j, j ∈ 1,2,3, known as the Jacobian matrix:

J∗ =

∂θ1
∂α1

∂θ1
∂α2

∂θ1
∂α3

∂θ2
∂α1

∂θ2
∂α2

∂θ2
∂α3

∂θ3
∂α1

∂θ3
∂α2

∂θ3
∂α3

This matrix can then be used to convert an end-point velocity vector to a set of motor
velocities:

∂θ1
∂ t

∂θ2
∂ t

∂θ3
∂ t

= J∗

∂α1
∂ t

∂α2
∂ t

∂α3
∂ t

172 The Kinematics of Multi-body Systems in Geometric Algebra

As it is the Jacobian matrix for the inverse kinematic problem, this matrix is specifically
labelled the inverse Jacobian matrix.

The Forward Jacobian

Many problems in robotics require us to take derivatives of the forward kinematic equations.
Specifically, we need to know the end-point plate velocity as a function of the motor speeds.

Our forward kinematic solution begins with calculating the position of the elbow point
for a given arm i:

wi = (rb + l cos(θi))si + l sin(θi)e3,
∂wi

∂θi
=−l sin(θi)si + l cos(θi)e3.

With the elbow point we can then calculate the pseudo-elbow point:

ai = wi− resi,
∂ai

∂θi
=

∂wi

∂θi
.

We then convert the pseudo-elbow to a CGA point:

Ai =
1
2

a2
i n∞ +ai +n0,

∂Ai

∂θi
=

(
∂ai

∂θi
·ai

)
n∞ +

∂ai

∂θi
.

The forearm length dual constraint sphere can then be constructed about the pseudo-elbow
point

Σ
∗
i = Ai−

1
2

ρ
2n∞,

∂Σ∗i
∂θi

=
∂Ai

∂θi
.

The intersection of all three constraint spheres, one from each arm, produces the point pair
on which the solution lies:

T = (Σ1∨Σ2∨Σ3)≡ I5(Σ
∗
1∧Σ

∗
2∧Σ

∗
3).

We can take derivatives of this point-pair with respect to each of the motor angles:

∂T
∂θ1

= I5

(
∂Σ∗1
∂θ1
∧Σ
∗
2∧Σ

∗
3

)
,

∂T
∂θ2

= I5

(
Σ
∗
1∧

∂Σ∗2
∂θ2
∧Σ
∗
3

)
,

∂T
∂θ3

= I5

(
Σ
∗
1∧Σ

∗
2∧

∂Σ∗3
∂θ3

)
.

7.7 Case Study: The Delta Robot 173

We can re-write these derivatives as follows:

∂T
∂θi

= (−1)i−1I5

(
∂Σ∗i
∂θi
∧C∗

)
, where C∗ =

∧
j∈1,2,3 j ̸=i

Σ
∗
j . (7.27)

Practically, when we take partial derivatives with respect to one θ at a time we are effectively
freezing two of the motors in position and moving the third. Geometrically, this process
forces the end-point plate to move along a circle formed by the intersection of the two
constraint spheres centred at the pseudo-elbow points of the frozen motors.

Fig. 7.7 With two limbs frozen the end-point plate is constrained to move such that its centre
always lies on the circle (shown in red) formed from the intersection of the other two limbs’
constraint spheres. The numbers displayed on the figure are the motor angles in radians.

Figure 7.7 shows the geometric significance of Equation 7.27. To get the end-point plate
position we again extract one end of the point-pair T :

P =
1
2

(
1+

T√
T 2

)
,

∂P
∂θi

=
1

2T 2

(
√

T 2 ∂T
∂θi
−T

∂T
∂θi
·T

√
T 2

)
,

Y =−P̃(T ·n∞),
∂Y
∂θi

=− ∂ P̃
∂θi

(T ·n∞)− P̃
(

∂T
∂θi
·n∞

)
.

174 The Kinematics of Multi-body Systems in Geometric Algebra

Finally we convert our end-point back to a 3D point:

y = downY,

∂y
∂θi

=
−(∂Y

∂θi
∧E0)E0(Y ·n∞)+(Y ∧E0)E0(

∂Y
∂θi
·n∞)

(Y ·n∞)2 .

We can write the end-point plate position as:

y = α1e1 +α2e2 +α3e3,
∂y
∂θi

=
∂α1

∂θi
e1 +

∂α2

∂θi
e2 +

∂α3

∂θi
e3.

With ∂y
∂θi

we are therefore in a position to build the forward Jacobian matrix:

J =

∂y

∂θ1
· e1

∂y
∂θ2
· e1

∂y
∂θ3
· e1

∂y
∂θ1
· e2

∂y
∂θ2
· e2

∂y
∂θ3
· e2

∂y
∂θ1
· e3

∂y
∂θ2
· e3

∂y
∂θ3
· e3

The inverse Jacobian matrix and the forward Jacobian matrix are, as the names suggest,
inverse to each other.

JJ∗ = I.

7.7.6 Comparing Direct Differentiation to Screw Theory

Both the direct differentiation method and our Screw Theory inspired method can be shown
to give us numerically identical Jacobian matrices, however the screw theoretic approach is
significantly easier for a practitioner to use as it does not require explicitly taking derivatives.
In this example of the Delta robot we have the unusual luxury of a simple closed form
solution for the pose of the robot in both the forward and inverse case and so the direct
differentiation method is easy to compute either manually as we have done here or using
automatic differentiation. With other robot architectures we may not have this blessing
and would have to rely on non-linear optimisation or algebraic geometry methods to find a
pose that satisfies the constraints. Table 7.1 shows a brief qualitative comparison of the two
methods, as ever in practice the choice of which is best to use will be down to the problem
itself and what tools and computational resources are available.

7.8 Conclusions and Future Work 175

Direct differentiation Screw Theory based
Does not require explicit derivatives
of pose calculation

✗ ✓

Can be implemented directly with au-
tomatic differentiation

✓ ✗

Encapsulates information about the
entire system

✗ ✓

Table 7.1 A qualitative comparison of the direct differentiation method vs the Screw Theory
based technique for analysing the Jacobians of the system.

7.8 Conclusions and Future Work

In this chapter we have embedded screw theoretic concepts within Geometric Algebra and
used this embedding to analyse kinematic pairs and full multi-body systems. The combination
of Screw Theory and GA is a particularly potent mix for robotics, allowing clean expressions
of geometric constraints and neat representations of kinematic limitations. There are many
potential avenues for future work in this area, one promising route would be in the use of
higher dimensional Clifford Algebras [11] to represent complex contact surfaces in joints,
another might be to expand the allowable motions to include expansion and shear, allowing
us to form an extended screw theory for soft robotic modelling. More immediately there is
the issue of characterising the computational cost of these Screw Theory based methods. A
comparison of the compute speed of these techniques with the direct differentiation method
is beyond the scope of this chapter but as it is of practical importance it will likely be a focus
of follow up work on this topic.

Chapter 8

Conclusions

8.1 Main Contributions

In this body of work we have made the following contributions:

• We link the problem of finding a valid rotor between two geometric primitives to the
direct addition of these primitives

• We introduce a technique for extracting a blade from an arbitrary pure grade multivector

• We show how linear combinations of multivectors can be used to make tubular and
ribbon surfaces and give formulae and techniques for intersections of these surfaces
with lines and the normal to the surface at any point

• We make explicit the mapping between lines in CGA and PGA and the screws of Screw
Theory

• We show how GA can provide Screw Theory with a coordinate free screw representa-
tion and show the applications of this in rigid body dynamics

• We show how the GA screw formulation allows us to extend Screw Theory multi-body
kinematics to include geometric primitives directly as kinematic constraints within
joints

8.2 Future Work

Much of this thesis has been focused on the theory and applications of the addition of GA
blades representing geometric primitives. We saw in Part I how addition can be used in an

178 Conclusions

intuitive way in to create intermediary objects that blend between extremal control objects
and how these intermediary objects are related to transformations that take one control object
to another. In the case of CGA circles and point pairs, while the properties of these interpolant
objects are still relatively poorly understood. There may be promising future work that could
be done in this area, investigating links between the differential geometry of these surfaces
and the form of the interpolant objects.

In the case of the addition of lines we have seen in Part II how linear combinations of these
flat elements produces the screws of Screw Theory and the various grades of the geometric
product map neatly onto its operators. GA provides a particularly elegant framework for
Screw Theory and the unification of geometric primitives, screws motions and covariant
products in one algebraic framework and holds great promise for concise descriptions of joint
types for multi-body systems. The combination of Screw Theory and Geometric Algebra is
underdeveloped, given the wide interest of GA practitioners in robotics.

References

[1] Aristidou, A. (2010). Tracking and Modelling Motion for Biomechanical Analysis. PhD
thesis, University of Cambridge.

[2] Ball, R. S. (1900). A treatise on the theory of screws. Cambridge University Press
Cambridge.

[3] Bauer, U. and Polthier, K. (2007). Parametric reconstruction of bent tube surfaces. In
2007 International Conference on Cyberworlds (CW’07), page 465–474. IEEE.

[4] Bayro-Corrochano, E. and Rivera-Rovelo, J. (2009). The use of geometric algebra for
3D modeling and registration of medical data. Journal of Mathematical Imaging and
Vision, 34(1):48–60.

[5] Besl, P. J. and McKay, N. D. (1992). A method for registration of 3D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256.

[6] Bezier, P. (1986). The Mathematical Basis of the UNISURF CAD System. Butterworth-
Heinemann, USA.

[7] Bortz, J. E. (1971). A new mathematical formulation for strapdown inertial navigation.
IEEE Transactions on Aerospace and Electronic Systems, AES-7(1):61–66.

[8] Bosche, F. (2011). Plane-based coarse registration of 3D point clouds with 4d models.
28th International Symposium on Automation and Robotics in Construction.

[9] Boyle, M. (2017). The integration of angular velocity. Advances in Applied Clifford
Algebras, 27(3):2345–2374.

[10] Breuils, S., Nozick, V., and Fuchs, L. (2019a). Garamon: A geometric algebra library
generator. Advances in Applied Clifford Algebras, 29(3).

[11] Breuils, S., Nozick, V., Fuchs, L., and Sugimoto, A. (2019b). Transverse approach to
geometric algebra models for manipulating quadratic surfaces. In Gavrilova, M., Chang, J.,
Thalmann, N. M., Hitzer, E., and Ishikawa, H., editors, Advances in Computer Graphics,
pages 523–534, Cham. Springer International Publishing.

[12] Breuils, S., Nozick, V., Sugimoto, A., and Hitzer, E. (2018). Quadric conformal
geometric algebra of R(9,6). Advances in Applied Clifford Algebras, 28(2).

[13] Cameron, J. I. (2007). Random Disconnected Applications of Geometric Algebra in
Computer Graphics and Computer Vision. PhD thesis, University of Cambridge.

180 References

[14] Candy, L. P. (2012). Kinematics in conformal geometric algebra with applications in
strapdown inertial navigation. PhD thesis, University of Cambridge.

[15] Catmull, E. and Rom, R. (1974). A class of local interpolating splines. In Computer
Aided Geometric Design, pages 317–326. Academic Press.

[16] Clavel, R. (1990). Device for the movement and positioning of an element in space.
United States Patent and Trademark Office, US4976582A.

[17] Clavel, R. (1991). Conception d’un robot parallèle rapide à 4 degrés de liberté. PhD
thesis, École polytechnique fédérale de Lausanne.

[18] Colapinto, P. (2011). Spatial Computing with Conformal Geometric Algebra. PhD
thesis, University of California, Santa Barbara.

[19] Colapinto, P. (2017). Composing surfaces with conformal rotors. Advances in Applied
Clifford Algebras, 27(1):453–474.

[20] Davidson, J. K. and Hunt, K. H. (2004). Robots and screw theory: Applications of
kinematics and statics to robotics. Journal of Mechanical Design, 126(4):763–764.

[21] Davies, T. H. (1981). Kirchhoff’s circulation law applied to multi-loop kinematic chains.
Mechanism and Machine Theory, 16(3):171–183.

[22] De Keninck, S. (2019). Non-parametric realtime rendering of subspace objects in
arbitrary geometric algebras. In Gavrilova, M., Chang, J., Thalmann, N. M., Hitzer, E.,
and Ishikawa, H., editors, Advances in Computer Graphics, Lecture Notes in Computer
Science, page 549–555. Springer International Publishing.

[23] De Keninck, S. (2020). ganja.js. Zenodo. https://doi.org/10.5281/ZENODO.3635774.

[24] De Keninck, S. and Dorst, L. (2019). Geometric algebra levenberg-marquardt. Advances
in Computer Graphics. CGI 2019. Lecture Notes in Computer Science, 11542:511–522.

[25] Deul, C., Burger, M., Hildenbrand, D., and Koch, A. (2009). Raytracing point clouds
using geometric algebra. GraVisMa proceedings.

[26] Doran, C. (2003). Circle and sphere blending with conformal geometric algebra.
arXiv:cs/0310017.

[27] Doran, C. and Lasenby, A. (2003). Geometric Algebra for Physicists. Cambridge
University Press.

[28] Dorst, L. (2020). A guided tour to the plane-based geometric algebra PGA, version
1.15. Bivector.net.

[29] Dorst, L., Fontijne, D., and Mann, S. (2007). Geometric algebra for computer science:
an object-oriented approach to geometry. Morgan Kaufmann series in computer graphics.
Elsevier; Morgan Kaufmann.

[30] Dorst, L. and Valkenburg, R. (2011). Square root and logarithm of rotors in 3D
conformal geometric algebra using polar decomposition. In Guide to Geometric Algebra
in Practice, page 81–104. Springer, London.

References 181

[31] Du, J., Goldman, R., and Mann, S. (2017). Modeling 3D geometry in the clifford
algebra R(4,4). Advances in Applied Clifford Algebras, 27(4):3039–3062.

[32] Duda, R., Hart, P., and Stork, D. (2001). Pattern Classification. Wiley Interscience,
2nd edition edition.

[33] Easter, R. B. and Hitzer, E. (2017). Double conformal geometric algebra. Advances in
Applied Clifford Algebras, 27(3):2175–2199.

[34] Eggert, D., Lorusso, A., and Fisher, R. (1997). Estimating 3D rigid body transfor-
mations: a comparison of four major algorithms. Machine Vision and Applications,
9(5):272–290.

[35] Eide, E. R. and Lasenby, J. (2018). A novel way of estimating rotors between conformal
objects and its applications in computer vision. AACA: Topical Collection AGACSE 2018,
IMECC – UNICAM, Campinas, Brazil.

[36] Featherstone, R. (2008). Rigid body dynamics algorithms. Springer.

[37] Featherstone, R. (2010). A beginner’s guide to 6D vectors (part 1). IEEE Robotics &
Automation Magazine, 17(3):83–94.

[38] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Commun.
ACM, 24(6):381–395.

[39] Fu, Z., Yang, W., and Yang, Z. (2013). Solution of inverse kinematics for 6R robot
manipulators with offset wrist based on geometric algebra. Journal of Mechanisms and
Robotics, 5(3).

[40] Gallardo-Alvarado, J. (2016). Kinematic Analysis of Parallel Manipulators by Algebraic
Screw Theory. Springer International Publishing.

[41] Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. (2005). Robust global
registration. Eurographics Symposiumon Geometry Processing.

[42] Gunn, C. (2011a). On the homogeneous model of euclidean geometry. arXiv:1101.4542
[math]. arXiv: 1101.4542.

[43] Gunn, C. (2020). On-metric alternatives to reciprocal frames. the bivector.net fo-
rums. https://discourse.bivector.net/t/non-metric-alternative-to-reciprocal-frame/105/4.
Accessed 12th May 2020.

[44] Gunn, C. G. (2011b). Geometry, Kinematics, and Rigid Body Mechanics in Cayley-Klein
Geometries. PhD thesis, Technical University Berlin.

[45] Gunn, C. G. and De Keninck, S. (2019a). Geometric algebra and computer graphics.
ACM SIGGRAPH 2019 Courses (SIGGRAPH ’19). Association for Computing Machinery,
New York, NY, USA, Article 12, 1–140.

[46] Gunn, C. G. and De Keninck, S. (2019b). Siggraph geometric algebra course video.

https://discourse.bivector.net/t/non-metric-alternative-to-reciprocal-frame/105/4

182 References

[47] Hadfield, H., Achawal, S., and Lasenby, J. (2021). Exploring novel surface represen-
tations via an experimental ray-tracer in CGA. Advances in Applied Clifford Algebras,
31(16).

[48] Hadfield, H. and Lasenby, J. (2019). Direct linear interpolation of geometric objects in
conformal geometric algebra. Advances in Applied Clifford Algebras, 29(85).

[49] Hadfield, H., Lasenby, J., Ramage, M., and Doran, C. (2019). Reform: Rotor estimation
from object resampling and matching. Advances in Applied Clifford Algebras: Topical
Collection AGACSE 2019, IMECC – UNICAM, Campinas, Brazil.

[50] Hadfield, H., Wei, L., and Lasenby, J. (2020). The forward and inverse kinematics
of a Delta robot. In Magnenat-Thalmann, N., Stephanidis, C., Wu, E., Thalmann, D.,
Sheng, B., Kim, J., Papagiannakis, G., and Gavrilova, M., editors, Advances in Computer
Graphics, Lecture Notes in Computer Science, page 447–458. Springer International
Publishing.

[51] Hadfield, H. and Wieser, E. (2020). Robots, ganja & screw theory. https://www.youtube.
com/watch?v=bj9JslblYPU.

[52] Hadfield, H., Wieser, E., Arsenovic, A., Kern, R., and The Pygae Team (2018-Present).
www.github.com/pygae/clifford.

[53] Hestenes, D. (2001). Old Wine in New Bottles: A New Algebraic Framework for
Computational Geometry, pages 3–17. Birkhäuser Boston, Boston, MA.

[54] Hestenes, D. (2010). New Tools for Computational Geometry and Rejuvenation of
Screw Theory, pages 3–33. Springer London, London.

[55] Hestenes, D. and Fasse, E. D. (2002). Homogeneous Rigid Body Mechanics with Elastic
Coupling, pages 197–212. Birkhäuser Boston, Boston, MA.

[56] Hestenes, D., Sobczyk, G., and S. Marsh, J. (1985). Clifford algebra to geometric
calculus. a unified language for mathematics and physics. American Journal of Physics,
53:510–511.

[57] Hildenbrand, D. (2007). Geometric Computing in Computer Graphics and Robotics
using Conformal Geometric Algebra. PhD thesis, Technische Universität Darmstadt.

[58] Hildenbrand, D. and Hitzer, E. (2008). Analysis of point clouds - using conformal
geometric algebra. In Proceedings of the Third International Conference on Computer
Graphics Theory and Applications, page 99–106. SciTePress - Science and and Technology
Publications.

[59] Hildenbrand, D., Hrdina, J., Návrat, A., and Vašík, P. (2019). Local controllability of
snake robots based on CRA, theory and practice. Advances in Applied Clifford Algebras,
30(1):2.

[60] Hildenbrand, D., Zamora, J., and Bayro-Corrochano, E. (2008). Inverse kinematics com-
putation in computer graphics and robotics using conformal geometric algebra. Advances
in Applied Clifford Algebras, 18(3–4):699–713.

https://www.youtube.com/watch?v=bj9JslblYPU
https://www.youtube.com/watch?v=bj9JslblYPU

References 183

[61] Hitzer, E. and Sangwine, S. J. (2019). Construction of multivector inverse for clifford
algebras over 2m+1-dimensional vector spaces from multivector inverse for clifford
algebras over 2m-dimensional vector spaces. Advances in Applied Clifford Algebras,
29(2):29.

[62] Hitzer, E., Tachibana, K., Buchholz, S., and Yu, I. (2009). Carrier method for the
general evaluation and control of pose, molecular conformation, tracking, and the like.
Advances in Applied Clifford Algebras, 19(2):339–364.

[63] Horn, R. A. and Johnson, C. R. (2012). Matrix analysis. Cambridge University Press,
2nd edition.

[64] Hrdina, J., Návrat, A., and Vašík, P. (2018). Geometric algebra for conics. Advances in
Applied Clifford Algebras, 28:1–21.

[65] Hrdina, J., Návrat, A., and Vašík, P. (2021). Projective geometric algebra as a subalgebra
of conformal geometric algebra. Advances in Applied Clifford Algebras, 31(18).

[66] Hunt, K. (1991). Kinematic geometry of mechanisms. Robotica, 9(1).

[67] K. Davidson, J., H. Hunt, K., and Pennock, G. (2004). Robots and screw theory:
Applications of kinematics and statics to robotics. Journal of Mechanical Design - J
MECH DESIGN, 126.

[68] Kavan, L., Collins, S., Žára, J., and O’Sullivan, C. (2008). Geometric skinning with
approximate dual quaternion blending. ACM Trans. Graph., 27(4):105:1–105:23.

[69] Kim, J. S., Jeong, J. H., and Park, J. H. (2015). Inverse kinematics and geometric
singularity analysis of a 3-SPS/S redundant motion mechanism using conformal geometric
algebra. Mechanism and Machine Theory, 90:23–36.

[70] Kleppe, A. L. and Egeland, O. (2016). Inverse kinematics for industrial robots us-
ing conformal geometric algebra. Modeling, Identification and Control: A Norwegian
Research Bulletin, 37(1):63–75.

[71] Kleppe, A. L. and Egeland, O. (2018). A curvature-based descriptor for point cloud
alignment using conformal geometric algebra. Advances in Applied Clifford Algebras,
28(2):50.

[72] Kochanek, D. H. U. and Bartels, R. H. (1984). Interpolating splines with local tension,
continuity, and bias control. ACM SIGGRAPH Computer Graphics, 18(3):33–41.

[73] Lasenby, A. (2011). Rigid Body Dynamics in a Constant Curvature Space and the
‘1D-up’ Approach to Conformal Geometric Algebra, pages 371–389. Springer London,
London.

[74] Lasenby, A., Lasenby, R., and Doran, C. (2011). Rigid Body Dynamics and Conformal
Geometric Algebra, page 3–24. Springer.

[75] Lasenby, J., Hadfield, H., and Lasenby, A. (2018). Calculating the rotor between con-
formal objects. AACA: Topical Collection AGACSE 2018, IMECC – UNICAM, Campinas,
Brazil, 29:102.

184 References

[76] Lasenby, A.N., Lasenby, J. Wareham, R.J. (2004). A covariant approach to geometry
using geometric algebra,. Cambridge University Engineering Department, Technical
Report, CUED/F-INFENG/TR-483.

[77] Lipkin, H. (2005). Time derivatives of screws with applications to dynamics and
stiffness. Mechanism and Machine Theory, 40(3):259–273.

[78] Merlet, J.-P. (2006). Parallel robots. Solid mechanics and its applications. Kluwer
Academic Publishers, 2nd edition.

[79] Minguzzi, E. (2013). A geometrical introduction to screw theory. European Journal of
Physics, 34(3):613–632. arXiv: 1201.4497.

[80] Müller, A. (2018). Screw and lie group theory in multibody dynamics. Multibody
System Dynamics, 42(2):219–248.

[81] Perwass, C. (2009). Geometric algebra with applications in engineering. Geometry
and computing. Springer.

[82] Pessina, L. (2012). Reymond clavel, creator of the delta robot, reflects on his career -
sti - school of engineering. https://sti.epfl.ch/reymond-clavel-creator-of-the-delta-robot-
reflects-on-his-career/.

[83] Peternell, M. and Pottmann, H. (1997). Computing rational parametrizations of canal
surfaces. Journal of Symbolic Computation, 23(2–3):255–266.

[84] Petrovic, V., Fallon, J., and Kuester, F. (2007). Visualizing whole-brain dti tractography
with gpu-based tuboids and lod management. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1488–1495.

[85] Pierrot, F., Fournier, A., and Dauchex, P. (1991). Towards a fully-parallel 6 dof robot
for high-speed applications. In 1991 IEEE International Conference on Robotics and
Automation Proceedings, page 1288–1293 vol.2.

[86] Pottmann, H. and Wallner, J. (2001). Computational Line Geometry. Mathematics and
Visualization. Springer-Verlag.

[87] Reuleaux, F. (1876). Kinematics of Machinery. Translated and Edited by Kennedy, A.
B. W. Macmillan and Company.

[88] Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-icp. In Robotics: science
and systems, volume 2, page 435. Seattle, WA.

[89] Selig, J. M. (2004). Lie groups and lie algebras in robotics. In Byrnes, J., editor,
Computational Noncommutative Algebra and Applications, pages 101–125, Dordrecht.
Springer Netherlands.

[90] Selig, J. M. (2005). Geometric fundamentals of robotics. Monographs in computer
science. Springer, 2nd edition.

[91] Selig, J. M. and Martins, D. (2014). On the line geometry of rigid-body inertia. Acta
Mechanica, 225(11):3073–3101.

References 185

[92] Shirokov, D. S. (2021). On computing the determinant, other characteristic polynomial
coefficients, and inverse in clifford algebras of arbitrary dimension. Computational and
Applied Mathematics, 40:173.

[93] Sinclair, A. J. (2005). Generalization of rotational mechanics and application to
aerospace systems. Texas A&M University.

[94] Tichý, R. (2020). Inverse kinematics for the industrial robot IRB4400 based on confor-
mal geometric algebra. In Mazal, J., Fagiolini, A., and Vasik, P., editors, Modelling and
Simulation for Autonomous Systems, Lecture Notes in Computer Science, page 148–161.
Springer International Publishing.

[95] Tingelstad, L. and Egeland, O. (2017). Motor estimation using heterogeneous sets
of objects in conformal geometric algebra. Advances in Applied Clifford Algebras,
27(3):2035–2049.

[96] Tingelstad, L. and Egeland, O. (2018). Motor parameterization. Advances in Applied
Clifford Algebras, 28(2).

[97] Tischler, C. R., Downing, D. M., Lucas, S. R., and Martins, D. (2000). Rigid-body
inertia and screw geometry. Proceedings of a Symposium Commemorating the Legacy,
Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of A Treatise on
the Theory of Screws, page 14.

[98] Valkenburg, R. and Dorst, L. (2011). Estimating motors from a variety of geometric
data in 3D conformal geometric algebra. Guide to Geometric Algebra in Practice, pages
25–45.

[99] Wareham, R. and Lasenby, J. (2008). Mesh vertex pose and position interpolation using
geometric algebra. In Perales, F. J. and Fisher, R. B., editors, Articulated Motion and
Deformable Objects, Lecture Notes in Computer Science, page 122–131. Springer Berlin
Heidelberg.

[100] Wareham, R. J. and Lasenby, J. (2011). Generating fractals using geometric algebra.
Advances in Applied Clifford Algebras, 21(3):647–659.

[101] Zamora, J. and Bayro-Corrochano, E. (2004). Inverse kinematics, fixation and grasping
using conformal geometric algebra. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 4, page
3841–3846.

	Table of contents
	1 Introduction and Background
	1.1 Introduction
	1.2 Basics of GA
	1.2.1 Defining a Specific Subalgebra
	1.2.2 The Products of GA
	1.2.3 Reciprocal and Pseudo-reciprocal Frames
	1.2.4 Linear Multivector Mappings
	1.2.5 Multivector Reverse and Multivector Inverses
	1.2.6 Rotors

	1.3 3D CGA
	1.3.1 Homogeneous Point Embedding
	1.3.2 Geometric Primitives
	1.3.3 Intersections
	1.3.4 Transformations
	1.3.5 Duality

	1.4 3D PGA
	1.4.1 Homogeneous Point Embedding
	1.4.2 Geometric Primitives
	1.4.3 Intersections
	1.4.4 Transformations
	1.4.5 Duality

	1.5 Other GA Frameworks

	I Computer Graphics, Computer Vision and Visualisation
	2 Calculating the rotor between conformal objects
	2.1 Introduction
	2.2 Related Work
	2.3 Conformal Geometric Algebra
	2.4 A Rotor between Objects
	2.4.1 Lines
	2.4.2 Planes
	2.4.3 Circles
	2.4.4 Spheres
	2.4.5 Point Pairs
	2.4.6 Lines to Circles: Planes to Spheres

	2.5 The Non-Uniqueness of the Recovered Rotors
	2.6 Conclusion

	3 Direct linear interpolation of geometric objects in conformal geometric algebra
	3.1 Introduction
	3.2 Motivation
	3.3 Linearly interpolating conformal points
	3.4 Linearly interpolating higher grade conformal objects
	3.5 Creating a blade from a pure grade multivector
	3.6 Techniques for understanding interpolant properties
	3.7 Point pairs
	3.8 Circles
	3.9 Lines
	3.9.1 Screw Theory
	3.9.2 Bivector representation of a line
	3.9.3 The bivector representation of a screw
	3.9.4 Adding dual lines
	3.9.5 Relationship to object manifold reprojection

	3.10 Planes
	3.11 Spheres
	3.12 Applications
	3.12.1 Higher order spline interpolation through objects
	3.12.2 Recursive scene simplification by averaging conformal objects
	3.12.3 k-means clustering of conformal objects
	3.12.4 Closest point to two non intersecting lines (least squares sense)

	3.13 Conclusions

	4 Exploring Novel Surface Representations
	4.1 Introduction
	4.2 Conformal Geometric Algebra, CGA
	4.3 Camera Model and Ray Casting
	4.4 Ray Geometries for Basic Objects
	4.4.1 Ray-Object Intersections
	4.4.2 Extracting Normals and Reflecting Rays

	4.5 Ray Tracing Evolved Circles
	4.5.1 Intersection Point of Ray and Interpolated Surface
	4.5.2 Analytic Form for Normals

	4.6 Calculating the Derivative of the Object Manifold Projection
	4.6.1 Closed Form Derivative of the Square Root Operation
	4.6.2 Closed Form Derivative of the Projector

	4.7 Ray Tracing Evolved Point Pairs
	4.7.1 Closed Form Solution for the Intersection of a Ray and an Evolved Point-Pair Surface
	4.7.2 Bounding Sphere and Normal Calculation
	4.7.3 Special Cases of Evolved Point-Pairs
	4.7.4 Triangular Facets from Evolved Point-Pairs

	4.8 Bézier Curves and Hermite Splines through Geometric Primitives
	4.8.1 Linear Interpolation as a Linear Bézier Curve
	4.8.2 Quadratic Bézier Curve
	4.8.3 Cubic Bézier Curves
	4.8.4 Nth Order Bézier Curve
	4.8.5 Rational Bézier Curves
	4.8.6 Hermite Cubic Curves and Splines

	4.9 Examples of Ray Tracing Simple Objects and Evolved Surfaces
	4.10 Meshing Evolved Surfaces
	4.11 Summary and Conclusions

	5 REFORM
	5.1 Introduction
	5.2 Proximity-based matching
	5.3 Finding the rotor between two sets of matched objects
	5.4 Iterative matching and rotor estimation
	5.5 Incorporating sampling
	5.6 Matching scenes of mixed geometric primitives
	5.7 Conclusions

	II Kinematics, Dynamics and Robotics
	6 Screw Theory in Geometric Algebra for Constrained Rigid Body Dynamics
	6.1 Introduction
	6.1.1 Screw Theory
	6.1.2 CGA
	6.1.3 PGA

	6.2 Forces, moments and static equilibrium
	6.2.1 What is a force?
	6.2.2 Representations of wrenches in CGA and PGA
	6.2.3 Forces as dual lines in CGA
	6.2.4 Forces as lines in PGA
	6.2.5 Force and moment representations in the GA literature

	6.3 Screw transformations, instantaneous twists, and the motor manifold
	6.3.1 Time derivatives of frame transformations

	6.4 Momentum and inertia
	6.4.1 Screw momentum
	6.4.2 Mapping from screw velocity to screw momentum
	6.4.3 The Screw Inertia Tensor
	6.4.4 Motor Bivectors as the Principal Screws of Inertia

	6.5 Unconstrained rigid body dynamics
	6.6 Constrained dynamics via virtual power
	6.7 Constrained dynamics by pinned multivectors
	6.8 Geometric objects as constraints
	6.8.1 Point constraint
	6.8.2 Point-pair constraint
	6.8.3 Direction constraint
	6.8.4 Flat point constraint
	6.8.5 Line constraint
	6.8.6 Circle constraint
	6.8.7 Plane constraint
	6.8.8 Sphere constraint

	6.9 Pinning parametric multivectors paths
	6.10 Pinning linear functions of parametric multivector paths
	6.11 Mapping Screw Velocity to Lie Algebra Velocity
	6.11.1 Exponential Mapping and the Bortz Equation
	6.11.2 Cayley Mapping
	6.11.3 Outer Exponential Mapping

	6.12 Conclusions

	7 The Kinematics of Multi-body Systems in Geometric Algebra
	7.1 Introduction
	7.2 Geometric Algebra
	7.3 Twists in Kinematic Chains
	7.4 Geometrically Constrained Kinematic Pairs
	7.5 The Geometry of Real Joints
	7.5.1 Spherical Joint
	7.5.2 Cylindrical Joint
	7.5.3 Planar Joint
	7.5.4 Revolute Joint
	7.5.5 Prismatic Joint
	7.5.6 Universal Joint

	7.6 The Kinematic Constraint Matrix and the Jacobian Matrix
	7.7 Case Study: The Delta Robot
	7.7.1 Geometry of a Delta Robot
	7.7.2 Calculating the Robot Pose
	7.7.3 Full Geometry and Kinematic Constraint Matrix of the Delta Robot
	7.7.4 From Constraint Matrix to Jacobian Matrices
	7.7.5 Calculating the Jacobian with Direct Differentiation
	7.7.6 Comparing Direct Differentiation to Screw Theory

	7.8 Conclusions and Future Work

	8 Conclusions
	8.1 Main Contributions
	8.2 Future Work

	References

